
Simulink® 3D Animation™
Reference

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® 3D Animation™ Reference
© COPYRIGHT 2023 by HUMUSOFT s.r.o. and The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2023 Online only New for Version 9.6 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Scenes
1

Blocks
2

Functions
3

iii

Contents

Scenes

1

Empty Scene
Empty environment

Description
The Empty Scene contains a 3D environment of an empty world that contains no objects and
vehicles. The scene is rendered using the Unreal Engine® from Epic Games®.

Setup
To simulate in this scene:

1 Add a block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 There is one scene available in the Simulink 3D Animation toolbox, so Scene name will be set to

Empty scene.

Layout
The scene uses the coordinate system of the world to locate the objects.

1 Scenes

1-2

Version History
Introduced in R2022b

See Also
Simulation 3D Actor | Simulation 3D Scene Configuration

 Empty Scene

1-3

Blocks

2

Cross Product
Cross product of two 3-D vectors

Libraries:
Simulink 3D Animation / Utilities

Description
Return the cross product–or vector product–of two 3-by-1 vectors. Each input is a vector of the form
a1 i + a2 j + a3k where i, j, and k are unit vectors parallel to the x, y, and z coordinate axes. The

output vector y = a × b is a 3 element vector orthogonal to the input vectors a and b

Ports
Input

Port 1 (a) — 3-element vector
vector

Input vector a , where the elements represent the magnitude of the vector parallel to the x, y, and z
coordinate axes.
Data Types: double

Port 2 (b) — 3-element vector
vector

Input vector b , where the elements represent the magnitude of the vector parallel to the x, y, and z
coordinate axes.
Data Types: double

Output

Port 1 (y) — Resultant vector
vector

Output vector y = a × b , which is orthogonal to a and b
Data Types: double

Version History
Introduced in R2006a

2 Blocks

2-2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also
Normalize Vector | Rotation Between 2 Vectors | Rotation Matrix to VR Rotation | Viewpoint Direction
to VRML Orientation

Topics
“Connect Virtual Worlds and Models”

 Cross Product

2-3

Joystick Input
Process input from asynchronous joystick device

Libraries:
Simulink 3D Animation

Description
The Joystick Input block provides interaction between a Simulink model and the virtual world
associated with a Simulink 3D Animation block.

The Joystick Input block uses axes, buttons, and the point-of-view selector, if present. You can use this
block as you would use any other Simulink source block. Its output ports reflect the status of the
joystick controls for axes and buttons.

The Joystick Input block also supports force-feedback devices.

Ports
Input

Force — Force feedback input
vector

Provide the force-feedback to be applied along supported joystick axes.

The length of the Force vector corresponds to the number of joystick axes that support force-
feedback.

To enable this port, you must first select the Enable force-feedback input parameter.
Data Types: double

Output

Axes — Joystick position along any given axis
vector with each element in the range [-1,1]

The first joystick axes element is x, the second element is y, and so on up to the total number of axes.
What the x axis represents depends on the type and shape of the joystick. The Joystick Input block
uses the mapping between the joystick driver and the joystick.
Data Types: double

Buttons — Status of joystick buttons
vector of 0 and 1

2 Blocks

2-4

Status of joystick buttons.
Data Types: double

Point of view — Current status of the joystick point-of-view selector
-1 (selector inactive) | scalar

The output signal is the angle of the point-of-view selector, or POV Hat, in degrees from 0 to 360. If
the selector is inactive, the signal is -1.
Data Types: double

Parameters
Joystick ID — The ID assigned to given joystick device
1 (default)

You can find the properties of the joystick that is connected to the system in the Game Controllers
section of the system Control Panel.

Adjust I/O ports according to joystick capabilities — Dynamically adjust ports to correspond to
joystick capabilities
on (default) | off

If you enable this parameter, the Simulink 3D Animation software dynamically adjusts the ports to
correspond to the capabilities of the connected joystick each time that you open the model. If the
connected device does not have force-feedback capability, selecting this check box causes the
removal of the force-feedback input from the block, even if you enable the Enable force-feedback
input parameter.

The block ports do not have the full widths provided by the Windows® Game Controllers interface.

Enable force-feedback input — Support joysticks with force-feedback
on (default) | off

If you select this check box, the Simulink 3D Animation software can support force-feedback joystick,
steering wheel, and haptic (one that enables tactile feedback) devices.

Output Ports — Enable output ports for joystick commands
off (default) | on

When the Adjust I/O ports according to joystick capabilities parameter is enabled, the output
ports change to correspond to the actual capabilities of the connected joystick. On Windows
platforms, the output ports have fixed maximum width provided by the system Game Controllers
interface.

Version History
Introduced before R2006a

See Also
Space Mouse Input | vrjoystick | vrspacemouse

 Joystick Input

2-5

Topics
“Connect Virtual Worlds and Models”

2 Blocks

2-6

MATLAB to VR Coordinates
Convert MATLAB coordinates to VR coordinates

Libraries:
Simulink 3D Animation / Utilities

Description
The MATLAB to VR Coordinates block converts a point with coordinates in the MATLAB® coordinate
system to the VRML coordinate system.

The following relation holds between the two coordinate systems:
[xm, ym, zm] = [xv, zv, -yv]

where MATLAB coordinates are denoted with the m subscript and Virtual World coordinates are
denoted with the v subscript. For more information on the two coordinate systems, see “Virtual World
Coordinate System”.

Ports
Input

M — Coordinates in MATLAB notation
3-element vector

Coordinates of a point in MATLAB notation, specified as a 3-element row vector.
Data Types: single | double

Output

VR — Coordinates in VRML notation
3-element vector

Coordinates of a point in VRML notation, returned as a 3-element row vector.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 MATLAB to VR Coordinates

2-7

See Also
vrcoordm2vr | vrcoordvr2m | VR to MATLAB Coordinates | VR Rotation to Rotation Matrix |
Rotation Matrix to VR Rotation | vrrotmat2vec | vrrotvec2mat

Topics
“Virtual World Coordinate System”

2 Blocks

2-8

Normalize Vector
Output unit vector parallel to input vector

Libraries:
Simulink 3D Animation / Utilities

Description
Use the Normalize Vector block to obtain a unit vector parallel to a given vector.

Ports
Input

Input 1 — Input signal
vector

Vector of arbitrary size.
Data Types: single | double

Output

Output 1 — Unit vector
vector

Unit vector parallel to the vector provided by the input signal.
Data Types: single | double

Parameters
Maximum modulus to treat vector as zero — Input signal threshold

0 (default)

The output is set to zeroes if the modulus of the input is equal to or lower than this value.

Version History
Introduced in R2006a

See Also
Cross Product | Rotation Between 2 Vectors | Rotation Matrix to VR Rotation | Viewpoint Direction to
VRML Orientation

 Normalize Vector

2-9

Topics
“Connect Virtual Worlds and Models”

2 Blocks

2-10

Rotation Between 2 Vectors
Virtual world rotation between two 3-D vectors

Libraries:
Simulink 3D Animation / Utilities

Description
The Rotation Between 2 Vectors takes the input of two 3-by-1 vectors and returns a virtual world
rotation (specified as a 4-element vector defining the axis and angle) that is needed to transform the
first input vector to the second input vector.

Ports
Input

Port 1 — Input signal
3-element vector

The input signal is a 3-element vector whose elements correspond to its magnitudes along the i , j , k
unit vectors, respectively.
Data Types: double

Port 2 — Input signal
3-element vector

The input signal is a 3- element vector whose elements correspond to its magnitudes along the
i , j , k unit vectors, respectively.
Data Types: double

Output

Output 1 — Axis-Angle rotation
4-element vector

The output of the block is an axis-angle representation of the rotation needed to transform the first
input vector to the second input vector.
Data Types: double

Version History
Introduced in R2006a

 Rotation Between 2 Vectors

2-11

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also
Cross Product | Normalize Vector | Rotation Matrix to VR Rotation | Viewpoint Direction to VRML
Orientation

Topics
“Connect Virtual Worlds and Models”

2 Blocks

2-12

Rotation Matrix to VR Rotation
Convert rotation matrix to axis/angle rotation

Libraries:
Simulink 3D Animation / Utilities

Description
The Rotation Matrix to VR Rotation converts Rotation Matrix (defined columnwise as 3-by-3 matrix or
as a 9-element column vector) into the Axis / Angle rotation representation used for defining rotations
in VR.

Ports
Input

input 1 — Rotation matrix
3-by-3 matrix

3D rotation, specified as a 3-by-3 columnwise-defined matrix, also known as a direction cosine matrix.

A representation of a three-dimensional spherical rotation as a 3-by-3 real, orthogonal matrix R: RTR
= RRT = I, where I is the 3-by-3 identity and RT is the transpose of R. This matrix is also known as the
direction cosine matrix (DCM). The DCM is the orientation of the object in space, relative to its
parent node.

R =
R11 R12 R13
R21 R22 R23
R31 R32 R33

=
Rxx Rxy Rxz
Ryx Ryy Ryz
Rzx Rzy Rzz

Data Types: single | double

Output

Port 1 — Axis/Angle Rotation
4 element vector

Output rotation, returned as a 4-element vector in axis/angle notation, The first three elements
specify the axis of rotation and the fourth element specifies the angle.

Parameters
Maximum value to treat input value as zero — Effective zero value

1e-12 (default) | scalar

 Rotation Matrix to VR Rotation

2-13

Input signal value is considered to be zero if it is equal to or lower than the value set in this
parameter. By default, the parameter is set to ε = 1e-12.

Version History
Introduced in R2019a

See Also
VR Rotation to Rotation Matrix

2 Blocks

2-14

Space Mouse Input
Process input from space mouse device

Libraries:
Simulink 3D Animation

Description
A space mouse is a device similar to a joystick in purpose, but it also provides movement control with
six degrees of freedom. This block reads the status of the space mouse and provides some commonly
used transformations of the input. The Space Mouse Input block supports current models of 3–D
navigation devices manufactured by 3Dconnexion (https://www.3dconnexion.com). Contact
MathWorks® Technical Support (https://www.mathworks.com/support) for further information
on the support of older 3Dconnexion devices.

To open the Block Parameters dialog box, double-click the block.

Ports
Output

Translation — Status of object translation
1 or true | 0 or false

Status of object translation, returned as 0 or false if not pressed and 1 or true if pressed.
Data Types: Boolean

Rotation — Status of object rotation
1 or true | 0 or false

Status of object rotation, returned as 0 or false if not pressed and 1 or true if pressed.
Data Types: Boolean

Buttons — Status of button
1 or true | 0 or false

Status of button, returned as 0 or false if not pressed and 1 or true if pressed.
Data Types: Boolean

Parameters
Port — Serial port where mouse is connected
COM1 (default) | COM2 | COM3 | COM4 | USB1 | USB2 | USB3 | USB4 | USB

 Space Mouse Input

2-15

https://www.3dconnexion.com
https://www.mathworks.com/support.html

Serial port to which the space mouse is connected. Possible values are USB1...USB4 and COM1...COM4.

Output type — Type of output
Speed (default) | Position | Viewpoint coordinates

This field specifies how the inputs from the device are transformed:

• Speed — No transformations are done. Outputs are translation and rotation speeds.
• Position — Translations and rotations are integrated. Outputs are position and orientation in

the form of roll/pitch/yaw angles.
• Viewpoint coordinates — Translations and rotations are integrated. Outputs are position and

orientation in the form of an axis and an angle. You can use these values as viewpoint coordinates
in a virtual world.

Dominant mode — Option to accept only prevailing movement and rotation
off (default) | on

If this check box is selected, the mouse accepts only the prevailing movement and rotation and
ignores the others. This mode is very useful for beginners using space mouse input.

Disable position movement — Option to fix rotations at initial values
off (default) | on

Fixes the rotations at initial values, allowing you to change positions only.

Disable rotation movement — Option to fix positions at initial values
off (default) | on

Fixes the positions at the initial values, allowing you to change rotations only.

Normalize output angle — Option to determine whether rotation angles should wrap in a full circle
off (default) | on

Determines whether the integrated rotation angles should wrap on a full circle (360°) or not. This is
not used when you set the Output Type to Speed.

Limit position — Option to limit position of mouse
off (default) | on

Determines whether you can limit the upper and lower positions of the mouse.

Position sensitivity — Mouse sensitivity for translations
0.0001 (default)

Mouse sensitivity for translations. Higher values correspond to higher sensitivity.

Rotation sensitivity — Mouse sensitivity for rotations
0.00001 (default)

Mouse sensitivity for rotations. Higher values correspond to higher sensitivity.

Initial position — Initial condition for translations
[0 0 0] (default)

Initial condition for integrated translations. This is not used when you set the Output Type to Speed.

2 Blocks

2-16

Initial rotation — Initial condition for rotations
[0 0 0] (default)

Initial condition for integrated rotations. This is not used when you set the Output Type to Speed.

Lower position limit — Lower limit of mouse
[-100 -100 -100] (default)

Position coordinates for the lower limit of the mouse.

Upper position limit — Upper limit of mouse
[100 100 100] (default)

Position coordinates for the upper limit of the mouse.

Version History
Introduced in R2007b

See Also
vrspacemouse | vrjoystick

Topics
“Connect Virtual Worlds and Models”
“Manipulator with SpaceMouse”

 Space Mouse Input

2-17

Viewpoint Direction to VR Orientation
Convert viewpoint direction to virtual world orientation

Libraries:
Simulink 3D Animation / Utilities

Description
The Viewpoint Direction to VR Orientation takes a viewpoint direction (a 3 element vector) as input
and outputs the corresponding virtual world viewpoint orientation (a 4-element rotation vector).

To open the Block Parameters dialog box, double-click the block.

Ports
Input

Input 1 — Viewpoint direction
3-element vector

Viewpoint direction, specified as a 3-element vector.
Data Types: single | double

Output

Port 1 — Axis/Angle Rotation
4 element vector

Output rotation, returned as a 4-element vector in axis/angle notation, The first three elements
specify the axis of rotation and the fourth element specifies the angle.

Version History
Introduced in R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also
Cross Product | Normalize Vector | Rotation Between 2 Vectors | Rotation Matrix to VR Rotation

2 Blocks

2-18

Topics
“Manipulator with SpaceMouse”
“Connect Virtual Worlds and Models”

 Viewpoint Direction to VR Orientation

2-19

VR Placeholder
Send unspecified value to Simulink 3D Animation block

Libraries:
Simulink 3D Animation

Description
The VR Placeholder block sends out a special value that is interpreted as “unspecified” by the VR
Sink block. When this value appears on the VR Sink input, whether as a single value or as an element
of a vector, the appropriate value in the virtual world stays unchanged. Use this block to change only
one value from a larger vector. For example, use this block to change just one coordinate from a 3-D
position.

The value output by the VR Placeholder block should not be modified before being used in other VR
blocks.

To open the Block Parameters dialog box, double-click the block.

Ports
Output

Output 1 — Output signal
real scalar | real vector

Output signal returned as unspecified, that drives the virtual reality visualization.
Data Types: double

Parameters
Output width — Length of vector
1 (default)

Length of the vector containing placeholder signal values.

Version History
Introduced before R2006a

See Also
VR Signal Expander

2 Blocks

2-20

VR RigidBodyTree
Visualize Robotics System Toolbox RigidBodyTree objects in Simulink

Libraries:
Simulink 3D Animation

Description
Use the VR RigidBodyTree block to visualize RigidBodyTree objects from Robotics System Toolbox™
in the Simulink 3D Animation viewer.

Ports
Input

Input 1 — Joint Positions
scalar | vector

Robot configuration that solves the desired end-effector pose, specified as a vector. A robot
configuration is a vector of joint positions for the rigidBodyTree model. The number of positions is
equal to the number of non-fixed joints in the rigidBodyTree parameter.
Data Types: single | double

Parameters
Associated VRML File — 3D World
3D world file name

Specify the virtual world in which the rigidBodyTree is visualized

Parent node (leave empty for root) — Scene hierarchy location

character vector | string

Specify the location of the rigidBodyTree object in the scene hierarchy. For more information on
scene hierarchy, see “Create a Virtual World”.

Rigid Body Tree — robot pose

rigidBodyTree

Specify the name of the Robotics System Toolbox rigidBodyTree object to be used in the virtual
world. If a robot with an identical name is already present in the virtual world, it is used for
visualization by default.

You can enable the Always use robot definition from the RigidBodyTree object parameter to
overwrite the existing robot, if present, with the robot specified by the rigidBodyTree object.

 VR RigidBodyTree

2-21

Always use robot definition from the RigidBodyTree object — create robot

‘off’ (default) | ’on’

Enable this parameter to always create a robot from the rigidBodyTree object specified by the
Rigid Body Tree parameter.

By default, the virtual world uses an existing robot by the same name, if it exists.

Sample time — Block sample time for simulation
0.1 (default) | scalar | vector

Specify the sample time for the block, or specify -1 to inherit the sample time.

Ensure that a viewer window is open during simulation — Open 3D world viewer

‘off’ (default) | ’on’

Enable this parameter to ensure that the Simulink 3D Animation Viewer is open during simulation.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

2 Blocks

2-22

VR to MATLAB Coordinates
Convert VR coordinates to MATLAB coordinates

Libraries:
Simulink 3D Animation / Utilities

Description
The VR to MATLAB Coordinates block converts a point with coordinates in the Virtual World
coordinate system (Znear) to the MATLAB coordinate system (Zup).

The following relation holds between the two coordinate systems:
[xm, ym, zm] = [xv, -zv, yv]

where MATLAB coordinates are denoted with the m subscript and Virtual World coordinates are
denoted with the v subscript. For more information on the two coordinate systems, see “Virtual World
Coordinate System”.

Ports
Input

VR — Coordinates in the Virtual World coordinate system
3-element vector

Coordinates of a point in VRML notation, specified as a 3-element row vector.
Data Types: single | double

Output

M — Coordinates in the MATLAB coordinate system
3-element vector

Coordinates of a point in MATLAB notation, returned as a 3-element row vector.
Data Types: single | double

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 VR to MATLAB Coordinates

2-23

See Also
vrcoordm2vr | vrcoordvr2m | VR Rotation to Rotation Matrix | Rotation Matrix to VR Rotation |
vrrotmat2vec | vrrotvec2mat

Topics
“Virtual World Coordinate System”

2 Blocks

2-24

VR Rotation to Rotation Matrix
Convert array/angle rotation to rotation matrix

Libraries:
Simulink 3D Animation / Utilities

Description
The VR Rotation to Rotation Matrix block converts the array / angle rotation representation used for
defining rotations in virtual reality to a 3-by-3 rotation matrix

Ports
Input

Input 1 — array/Angle rotation
4-element vector

Input rotation, specified as a 4-element vector in array/angle notation,. The first three elements
specify the array of rotation and the fourth element specifies the angle.
Data Types: single | double

Output

Output 1 — Rotation matrix
3-by-3 matrix

3D rotation, returned as a 3-by-3 columnwise defined matrix, also known as a direction cosine matrix.

A representation of a three-dimensional spherical rotation as a 3-by-3 real, orthogonal matrix R: RTR
= RRT = I, where I is the 3-by-3 identity and RT is the transpose of R. This matrix is also known as the
direction cosine matrix (DCM). The DCM is the orientation of the object in space, relative to its
parent node.

R =
R11 R12 R13
R21 R22 R23
R31 R32 R33

=
Rxx Rxy Rxz
Ryx Ryy Ryz
Rzx Rzy Rzz

Data Types: single | double

Parameters
Maximum value to treat input value as zero — Effective zero value

1e-12 (default) | scalar

 VR Rotation to Rotation Matrix

2-25

Input signal value is considered to be zero if it is equal to or lower than the value set in this
parameter. By default, the parameter is set to ε = 1e-12.

Version History
Introduced in R2019a

See Also
Rotation Matrix to VR Rotation

2 Blocks

2-26

VR Signal Expander
Expand input vectors into fully qualified virtual world field vectors

Library
Simulink 3D Animation

Description
The VR Signal Expander block creates a vector of predefined length, using some values from the
input ports and filling the rest with placeholder signal values.

To open the Block Parameters dialog box, double-click the block.

Data Type Support
A VR Signal Expander block accepts and outputs signals of type double.

Parameters
Output width — How long the output vector should be.

Output signal indices — Vector indicating the position at which the input signals appear at the
output. The remaining positions are filled with VR Placeholder signals.

For example, suppose you want an input vector with two signals and an output vector with four
signals, with the first input signal in position 2 and the second input signal in position 4. In the
Output width box, enter 4 and in the Output signal indices box, enter [2,4]. The first and third
output signals are unspecified.

See Also
• VR Placeholder

Version History
Introduced before R2006a

 VR Signal Expander

2-27

VR Sink
Write data from Simulink model to virtual world

Libraries:
Simulink 3D Animation

Description
To output data from the model to control and animate a virtual world, use a VR Sink block. The VR
Sink block writes values from its ports to virtual world fields specified in the Block Parameters dialog
box.

The VR Sink block is equivalent to the VR To Video block, except that the Show video output port
parameter for the VR Sink block is cleared by default.

The VR Sink block cannot be compiled by the Simulink Coder™ software, but it can be used as a
SimViewing device on the host computer.

Note The current internal viewer window (vrfigure) properties are saved together with the
Simulink model. Next time you open the model, the internal viewer window opens with the same
parameters that were last saved, such as position, size, and navigation mode. When you close the
viewer window, the Simulink software does not alert you if these properties have changed.

The VR Sink block is a Sim Viewing Device. You can include it in models that you compile with
Simulink Coder software. If you use External mode to compile, build, and deploy the model on a
target platform, such as Simulink Real-Time™ or Simulink Desktop Real-Time™, some sink blocks and
Sim Viewing Device blocks stay in normal mode during simulation, receive data from the target, and
display that data. For more information, see “Use C/C++ S-Functions as Sim Viewing Devices in
External Mode” (Simulink).

Ports
Input

Input 1 — Input signal
real scalar | real vector

Input signal to drive the virtual reality visualization of nodes selected in the Virtual World Tree.
Data Types: double

2 Blocks

2-28

Output

Output 1 — Output video stream
3-element vector of video signal dimensions

Use the output port to access the RGB video stream of the VR signal input.
Data Types: double

Parameters
Source file — File name specifying virtual world that connects to block
string scalar | character vector

By default, the full path to the associated virtual world 3D file appears in this text box. If you enter
only the file name in this box, the software assumes that the virtual world 3D file resides in the same
folder as the model file. You can specify a VRML file or an X3D file.

• Click New to open an empty default virtual world editor. When you either enter a source file name
or use the Browse button, the New button becomes an Edit button.

• Click Edit to launch the default virtual world editor with the source file open.
• Click View to view the world in the Simulink 3D Animation Viewer or a Web browser.
• Click Reload to reload the world after you change it.

Open Viewer automatically — Display virtual world on model load
off | on

Enable this parameter to display the virtual world after loading the Simulink model.

Allow viewing from the Internet — View virtual world over network
off (default) | on

Enable this parameter to make the virtual world accessible for viewing on a client computer. If you do
not select this check box, then the world is visible only on the host computer. This parameter is
equivalent to the RemoteView property of a vrworld object.

Description — Virtual reality object description
string scalar | character vector

The description is displayed in all virtual reality object listings, in the title bar of the Simulink 3D
Animation Viewer, and in the list of virtual worlds on the Simulink 3D Animation HTML page. This
parameter is equivalent to the Description property of a vrworld object.

Sample time — Block sample time for simulation
0.1 (default) | scalar | vector

Specify the sample time for the block, or specify -1 to inherit the sample time.

Show video output port — Output VR signal to video
off (default) | on

Enable a port to output an RGB video stream for further 2D video processing.

 VR Sink

2-29

Video output signal dimensions — Specify video output size
[200 320] (default) | 2-element vector

Specify the dimensions ([height width]) of the video output signal in pixels.

Virtual World Tree — View structure of virtual world
node

This box shows the structure of the virtual world 3D file and the virtual world itself.

Nodes that have names are marked with red arrows. You can access them from the Simulink 3D
Animation interface. Nodes without names but whose children are named are also marked with red
arrows. This marking scheme makes it possible for you to find all accessible nodes by traversing the
tree using arrows. Other nodes have a blue dot before their names.

Fields with values that you set have check boxes. Use these check boxes to select the fields whose
values you want the Simulink software to update. For every field that you select, an input port is
created in the block. Input ports are assigned to the selected nodes and fields in the order that
corresponds to the virtual world 3D file.

Fields whose values cannot be written (because their parent nodes do not have names, or because
they are not of virtual world data class eventIn or exposedField) have an X-shaped icon.

Show node types — Display node types in virtual world tree
off (default) | on

Enable this parameter to show node types in the virtual world tree.

Show field types — Display field types in virtual world tree
off (default) | on

Enable this parameter to show field types in the virtual scene tree.

Version History
Introduced before R2006a

See Also
VR Source | VR To Video

Topics
“Connect Virtual Worlds and Models”
“Detect Object Collisions”
“Foucault Pendulum Model with VRML Visualization”
“Use C/C++ S-Functions as Sim Viewing Devices in External Mode” (Simulink)

2 Blocks

2-30

VR Source
Read data from virtual world to Simulink model

Libraries:
Simulink 3D Animation

Description
Use the VR Source block to provide interactivity between a user navigating the virtual world and the
simulation of a Simulink model. The VR Source block registers user interactions with the virtual
world and passes that data to the model to affect the simulation of the model. The VR Source reads
values from virtual world fields specified in the Block Parameters dialog box and inputs their values
to a model.

Examples of some ways that you can use a VR Source block to input data from a virtual world to a
Simulink model include:

• Use sensor data from a virtual world to control a simulation. For details, see “Add Sensors to
Virtual Worlds” and “Detect Object Collisions”.

• Provide interactivity between user navigation and interaction in a virtual world and the simulation
of the model.

• Have a simulation react to virtual world events, such as time ticks or outputs from scripts.
• Use static information from the virtual world, such as the size of a box, to control a simulation.

For example, you can specify setpoints in the virtual world, so that user can specify the location of a
virtual world object interactively. The simulation then responds to the changed location of the object.
The VR Source block can read into the model events from the virtual world, such as time ticks or
outputs from scripts. The VR Source block can also read into the model static information about the
virtual world (for example, the size of a box defined in the virtual world 3D file). For examples of
models that use the VR Source block, see “Virtual Control Panel” and the Set the Setpoint
subsystem in the “Portal Crane with Control Panel” example.

Note The current internal viewer window (vrfigure) properties are saved together with the
Simulink model. The next time that you open the model, the internal viewer window opens with the
same parameters that were saved, such as position, size, and navigation mode. When closing the
viewer window, the Simulink software does not alert you if these properties have changed.

To open the Block Parameters dialog box VR Source block:

• When you first add a VR Source block and it is still not associated with a virtual world, double-
click the block.

• Otherwise, in the Simulink 3D Animation Viewer, select SimulationBlock parameters. If the
viewer is not already open, you can open it by double-clicking the VR Source block.

 VR Source

2-31

You cannot use the Simulink Coder software to compile a model that includes a VR Source block.

Ports
Output

Output 1 — Output signal
real scalar | real vector

Output signal that drives the virtual reality visualization of nodes selected in the Virtual World Tree.
Data Types: double

Parameters
Source file — File name specifying virtual world that connects to block
string scalar | character vector

By default, the full path to the associated virtual world 3D file appears in this text box. If you enter
only the file name in this box, the software assumes that the virtual world 3D file resides in the same
folder as the model file. You can specify a VRML file or an X3D file.

• Click New to open an empty default virtual world editor. When you either enter a source file name
or use the Browse button, the New button becomes an Edit button.

• Click Edit to launch the default virtual world editor with the source file open.
• Click View to view the world in the Simulink 3D Animation Viewer or a Web browser.
• Click Reload to reload the world after you change it.

Open Viewer automatically — Display virtual world on model load
off | on

Enable this parameter to display the virtual world after loading the Simulink model.

Allow viewing from the Internet — View virtual world over network
off (default) | on

Enable this parameter to make the virtual world accessible for viewing on a client computer. If you do
not select this check box, then the world is visible only on the host computer. This parameter is
equivalent to the RemoteView property of a vrworld object.

Description — Virtual reality object description
string scalar | character vector

The description is displayed in all virtual reality object listings, in the title bar of the Simulink 3D
Animation Viewer, and in the list of virtual worlds on the Simulink 3D Animation HTML page. This
parameter is equivalent to the Description property of a vrworld object.

Sample time — Block sample time for simulation
0.1 (default) | scalar | vector

Specify the sample time for the block, or specify -1 to inherit the sample time.

Virtual World Tree — View structure of virtual world
node

2 Blocks

2-32

This box shows the structure of the virtual world 3D file and the virtual world itself.

Nodes that have names are marked with red arrows. You can access them from the Simulink 3D
Animation interface. Nodes without names but whose children are named are also marked with red
arrows. This marking scheme makes it possible for you to find all accessible nodes by traversing the
tree using arrows. Other nodes have a blue dot before their names.

Fields with values that you set have check boxes. Use these check boxes to select the fields whose
values you want the Simulink software to update. For every field that you select, an input port is
created in the block. Input ports are assigned to the selected nodes and fields in the order that
corresponds to the virtual world 3D file.

Fields whose values cannot be written (because their parent nodes do not have names, or because
they are not of virtual world data class eventIn or exposedField) have an X-shaped icon.

Show node types — Display node types in virtual world tree
off (default) | on

Enable this parameter to show node types in the virtual world tree.

Show field types — Display field types in virtual world tree
off (default) | on

Enable this parameter to show field types in the virtual scene tree.

Version History
Introduced in R2011b

See Also
VR Sink | VR To Video

Topics
“Connect Virtual Worlds and Models”
“Detect Object Collisions”
“Foucault Pendulum Model with VRML Visualization”
“Use C/C++ S-Functions as Sim Viewing Devices in External Mode” (Simulink)

 VR Source

2-33

VR Text Output
Allows display of Simulink signal values as text in virtual reality scene

Library
Simulink 3D Animation

Description
The VR Text Output can display Simulink values of signal as text in a virtual reality scene.

Text rendering is a demanding task for virtual world viewers, so there is generally be a decrease in
rendering speed when outputting text. This effect increases with the complexity of the text output.
You can improve the performance if you limit the output from the Simulink model to only the values of
signals that change (e.g., modeling captions) or use more static-text nodes.

To open the Block Parameters dialog box, double-click the block.

Parameters
Associated VRML file — Virtual world 3D file specifying the virtual world to which text is output.

Associated Text node — Text node within the virtual world to which text is output.

Format string — Format used for output text. This block uses sprintf() to format the output
strings. Like sprintf(), it works in a vectorized fashion, where the format string is recycled
through the components of the input vector. This block does not support the %c and %s conversion
formats, as signals in the Simulink product cannot have both characters and strings.

Sample time — Enter the sample time or -1 for inherited sample time.

Ensure that a viewer window is open during simulation — Select this check box to ensure that
the Simulink 3D Animation Viewer is open during simulation.

See Also
• VR Sink
• VR Source
• VR To Video
• VR Tracer

2 Blocks

2-34

Version History
Introduced in R2006b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

 VR Text Output

2-35

VR To Video
Write data from Simulink model to virtual world (video output port enabled)

Libraries:
Simulink 3D Animation

Description
The VR to Video block is equivalent to the VR Sink block, except that its Show video output port is
selected by default.

To open the Block Parameters dialog box, double-click the block.

See the VR Sink block for details.

Ports
Input

Input 1 — Input signal
real scalar | real vector

Input signal to drive the virtual reality visualization of nodes selected in the Virtual World Tree.
Data Types: double

Output

Output 1 — Output video stream
3-element vector of video signal dimensions

Use the output port to access the RGB video stream of the VR signal input.
Data Types: double

Parameters
Source file — File name specifying virtual world that connects to block
string scalar | character vector

By default, the full path to the associated virtual world 3D file appears in this text box. If you enter
only the file name in this box, the software assumes that the virtual world 3D file resides in the same
folder as the model file. You can specify a VRML file or an X3D file.

• Click New to open an empty default virtual world editor. When you either enter a source file name
or use the Browse button, the New button becomes an Edit button.

2 Blocks

2-36

• Click Edit to launch the default virtual world editor with the source file open.
• Click View to view the world in the Simulink 3D Animation Viewer or a Web browser.
• Click Reload to reload the world after you change it.

Open Viewer automatically — Display virtual world on model load
off | on

Enable this parameter to display the virtual world after loading the Simulink model.

Allow viewing from the Internet — View virtual world over network
off (default) | on

Enable this parameter to make the virtual world accessible for viewing on a client computer. If you do
not select this check box, then the world is visible only on the host computer. This parameter is
equivalent to the RemoteView property of a vrworld object.

Description — Virtual reality object description
string scalar | character vector

The description is displayed in all virtual reality object listings, in the title bar of the Simulink 3D
Animation Viewer, and in the list of virtual worlds on the Simulink 3D Animation HTML page. This
parameter is equivalent to the Description property of a vrworld object.

Show video output port — Output VR signal to video
on (default) | off

Enables a port to output an RGB video stream for further 2D video processing.

Video output signal dimensions — Specify video output size
[200 320] (default) | 2-element vector

Specify the dimensions ([height width]) of the video output signal in pixels.

Show node types — Display node types in virtual world tree
off (default) | on

Enable this parameter to show node types in the virtual world tree.

Show field types — Display field types in virtual world tree
off (default) | on

Enable this parameter to show field types in the virtual scene tree.

Version History
Introduced in R2007b

See Also
VR Sink

Topics
“Virtual World Data Types”

 VR To Video

2-37

“Use C/C++ S-Functions as Sim Viewing Devices in External Mode” (Simulink)

2 Blocks

2-38

VR Tracer
Trace trajectory of object in associated virtual scene

Libraries:
Simulink 3D Animation

Description
The VR Tracer block allows you to trace the trajectory of an object in the associated virtual scene.

This block creates marker nodes in regular time steps either as children of the specified parent node
(Parent node parameter) or at the top level of scene hierarchy (root).

You can specify one of three types of markers:

• General shape
• Line segments connecting object positions in every time step
• Axis-aligned triads for orienting the trajectory in the 3-D space

You can also project traced object positions to a plane or to a point.

Object position input must correspond to the placement of the object in the scene hierarchy. If the
traced object resides as a child of a parent object, define the parent object DEF name in the parent
node field. If the traced object resides at the top of the scene hierarchy (its position is defined in
global scene coordinates), leave this field empty.

The first block input vector determines the position of the marker. The second block input (if enabled
by the Marker color selection parameter) represents the marker color. The second or third block
input vector (depending on whether the marker color input vector is enabled) specifies the project
point coordinates.

To open the Block Parameters dialog box, double-click the block.

Ports
Input

Position — Position coordinates of node
3-element vector

Object position input corresponding to the placement of the object in the scene hierarchy. If the
traced object resides as a child of a parent object, define the parent object name in the Parent node
(leave empty for root) parameter.
Data Types: double

Color — Marker color
3-element vector

 VR Tracer

2-39

Note This port is enabled when the Marker color selection parameter is set to Block input

Provide the color to be used for the tracer markers as a 3-element vector of R, G, and B values.
Data Types: double

Parameters
Associated VRML file — Virtual world 3D file
string scalar | character vector

Specify the virtual world file used for the 3D viewer.

Parent node (leave empty for root) — — Select node from hierarchy
VR node

Select the node to be traced from the scene hierarchy.

Marker shape — Select marker shape
None (default) | Tetrahedron | Pyramid | Box | Octahedron | Sphere

Select a shape from the provided options to mark the signal trace.

Connect markers with line segments — Display traced path
on (default) | off

Enable this parameter to connect the markers on the traced object's path.

Place a triad at each marker position — Provide orientation information
on (default) | off

Enable this parameter to place a triad at each marker position. A triad helps you orient the object
trajectory in the x-y-z plane.

Marker scale — Specify size of marker
[1 1 1] (default)

Specify a 3-element vector that defines the scaling of predefined marker shapes and triads. This
parameter allows accommodation for scenes of various sizes.

Marker color selection — Specify source of marker colors
Block input (default) | Selected from color list | Defined as RGB values

• Block input — Disables Marker color parameter and relies on the second block input to define
the marker color. Selecting this option enables the second block input, to which you can connect a
signal for the marker color.

• Selected from color list — Enables the Marker color parameter. You can select one color
from a list for the marker.

• Defined as RGB values — Enables Marker color parameter to accept RGB values for the
marker color.

Marker color — Specify tracer color
yellow (default) | magenta | cyan | red | green | blue | white | black

2 Blocks

2-40

Set the tracer marker color from the provided options. This parameter is enabled when you set
Marker color selection to Selected from color list.

Marker color (RGB) — Specify tracer color
[1 0 0] (default) | 3-element vector

Set the tracer marker color as a 3-element vector of RGB values, each ranging from 0-255.

Sample time — Block sample time for simulation
0.1 (default) | scalar | vector

Specify the sample time for the block, or specify -1 to inherit the sample time.

Ensure that a viewer window is open during simulation — Keep viewer open
off (default) | on

Select this check box to ensure that the Simulink 3D Animation Viewer is open during simulation.

Project positions on a plane — Project path onto plane
off (default) | on

Specify whether to display line segments from an object onto a plane to approximate the trajectory of
the object.

Projection plane equation coefficients (ax+by+cz+d=0) — Specify projection plane as
coefficients of vector
[0 1 0 0] (default)

When the Project positions on a plane parameter is enabled, specify the plane onto which to
project the position of the object. The coefficients are in the form ax+by+cz+d=0. For example, if you
use the default plane equation coefficients to [0 1 0 0] for the vrtkoff_trace model, then after
you simulate the model, the object positions project to the y=0 plane.

 VR Tracer

2-41

matlab:vrtkoff_trace

Project positions to a point — Display line segments from marker to projection
None (default) | Defined in the block mask | Defined in the block input

Displays line segments from an object to a point to approximate the trajectory of the object.

• None — (Default) No projection to a point.
• Defined in block mask — If you select this option, enter coordinates in the Projection point

coordinates edit box.
• Defined in the block input — If you select this option, specify the coordinates of the point

in the output of a block that inputs to the VR Tracer block.

Version History
Introduced in R2008b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Actual data type or capability support depends on block implementation.

See Also
VR Sink | VR Source | VR To Video | VR Text Output

2 Blocks

2-42

Simulation 3D Actor Transform Get
Get actor translation, rotation, scale

Libraries:
Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Actor Transform Get block provides the actor translation, rotation, and scale for
the Simulink simulation environment.

The block uses a vehicle-fixed coordinate system that is initially aligned with the inertial world
coordinate system.

Axis Description
X Forward direction of the vehicle

Roll — Right-handed rotation about X-axis
Y Extends to the right of the vehicle, initially parallel to the ground plane

Pitch — Right-handed rotation about Y-axis
Z Extends upwards

Yaw — Left-handed rotation about Z-axis

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components.
Components do not exist by themselves; they are associated with an actor.

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Actor
Transform Get block. That way, the Unreal Engine 3D visualization environment prepares the data

 Simulation 3D Actor Transform Get

2-43

before the Simulation 3D Actor Transform Get block receives it. To check the block execution order,
right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Actor Transform Get — 1

For more information about execution order, see “Control and Display Execution Order” (Simulink).

Ports
Output

Translation — Actor translation
array

Actor translation, in m. Array dimensions are number of parts per actor-by-3.

• Translation(1,1), Translation(1,2), and Translation(1,3) — Vehicle displacement
along world X-, Y, and Z- axes, respectively.

• Translation(...,1), Translation(...,2), and Translation(...,3) — Actor
displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-,
Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Translation signal:

• Dimensions are [5x3].
• Contains translation information according to the axle and wheel locations, relative to vehicle.

Translation =

Xv Yv Zv
XFL YFL ZFL
XFR YFR ZFR
XRL YRL ZRL
XRR YRR ZRR

Translation Array Element
Vehicle, Xv Translation(1,1)
Vehicle, Yv Translation(1,2)
Vehicle, Zv Translation(1,3)
Front left wheel, XFL Translation(2,1)
Front left wheel, YFL Translation(2,2)
Front left wheel, ZFL Translation(2,3)
Front right wheel, XFR Translation(3,1)
Front right wheel, YFR Translation(3,2)
Front right wheel, ZFR Translation(3,3)
Rear left wheel, XRL Translation(4,1)
Rear left wheel, YRL Translation(4,2)

2 Blocks

2-44

Translation Array Element
Rear left wheel, ZRL Translation(4,3)
Rear right wheel, XRR Translation(5,1)
Rear right wheel, YRR Translation(5,2)
Rear right wheel, ZRR Translation(5,3)

Rotation — Actor rotation
array

Actor rotation across a [-pi/2, pi/2] range, in rad. Array dimensions are number of parts per actor-
by-3.

• Rotation(1,1), Rotation(1,2), and Rotation(1,3) — Vehicle rotation about vehicle-fixed
pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

• Rotation(...,1), Rotation(...,2), and Rotation(...,3) — Actor rotation about vehicle-
fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Rotation signal:

• Dimensions are [5x3].
• Contains rotation information according to the axle and wheel locations.

Rotation =

Pitchv Rollv Yawv
PitchFL RollFL YawFL
PitchFR RollFR YawFR
PitchRL RollRL YawRL
PitchRR RollRR YawRR

Rotation Array Element
Vehicle, Pitchv Rotation(1,1)
Vehicle, Rollv Rotation(1,2)
Vehicle, Yawv Rotation(1,3)
Front left wheel, PitchFL Rotation(2,1)
Front left wheel, RollFL Rotation(2,2)
Front left wheel, YawFL Rotation(2,3)
Front right wheel, PitchFR Rotation(3,1)
Front right wheel, RollFR Rotation(3,2)
Front right wheel, YawFR Rotation(3,3)
Rear left wheel, PitchRL Rotation(4,1)
Rear left wheel, RollRL Rotation(4,2)
Rear left wheel, YawRL Rotation(4,3)
Rear right wheel, PitchRR Rotation(5,1)
Rear right wheel, RollRR Rotation(5,2)

 Simulation 3D Actor Transform Get

2-45

Rotation Array Element
Rear right wheel, YawRR Rotation(5,3)

Scale — Actor scale
array

Actor scale. Array dimensions are number of number of parts per actor-by-3.

• Scale(1,1), Scale(1,2), and Scale(1,3) — Vehicle scale along world X-, Y-, and Z- axes,
respectively.

• Scale(...,1), Scale(...,2), and Scale(...,3) — Actor scale along world X-, Y-, and Z-
axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Scale signal:

• Dimensions are [5x3].
• Contains scale information according to the axle and wheel locations.

Scale =

XVscale YVscale ZVscale
XFLscale YFLscale ZFLscale
XFRscale YFRscale ZFRscale
XRLscale YRLscale ZRLscale
XRRscale YRRscale ZRRscale

Scale Array Element
Vehicle, Xvscale

Scale(1,1)
Vehicle, Yvscale

Scale(1,2)
Vehicle, Zvscale

Scale(1,3)
Front left wheel, XFLscale

Scale(2,1)
Front left wheel, YFLscale

Scale(2,2)
Front left wheel, ZFLscale

Scale(2,3)
Front right wheel, XFRscale

Scale(3,1)
Front right wheel, YFRscale

Scale(3,2)
Front right wheel, ZFRscale

Scale(3,3)
Rear left wheel, XRLscale

Scale(4,1)
Rear left wheel, YRLscale

Scale(4,2)
Rear left wheel, ZRLscale

Scale(4,3)
Rear right wheel, XRRscale

Scale(5,1)
Rear right wheel, YRRscale

Scale(5,2)
Rear right wheel, ZRRscale

Scale(5,3)

2 Blocks

2-46

Parameters
Tag for actor in 3D scene, ActorTag — Name
SimulinkActor1 (default) | character vector

Actor name.

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components.
Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor
when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor
Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Number of parts per actor to get, NumberOfParts — Name
1 (default) | scalar

Number of parts per actor. Actors are scene objects that support 3D translation, rotation, and scale.
Parts are actor components. Components do not exist by themselves; they are associated with an
actor. Typically, a vehicle actor with a body and four wheels has 5 parts.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor
when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor
Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Sample time — Sample time
-1 (default) | scalar

Sample time, Ts. The graphics frame rate is the inverse of the sample time.

Version History
Introduced in R2022b

See Also
Simulation 3D Actor Transform Set | Simulation 3D Camera Get | Simulation 3D Scene Configuration

 Simulation 3D Actor Transform Get

2-47

Simulation 3D Actor Transform Set
Set actor translation, rotation, scale

Libraries:
Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Actor Transform Set block sets the actor translation, rotation, and scale in the 3D
visualization environment.

The block uses a vehicle-fixed coordinate system that is initially aligned with the inertial world
coordinate system.

Axis Description
X Forward direction of the vehicle

Roll — Right-handed rotation about X-axis
Y Extends to the right of the vehicle, initially parallel to the ground plane

Pitch — Right-handed rotation about Y-axis
Z Extends upwards

Yaw — Left-handed rotation about Z-axis

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components.
Components do not exist by themselves; they are associated with an actor.

Tip Verify that the Simulation 3D Actor Transform Set block executes before the Simulation 3D
Scene Configuration block. That way, Simulation 3D Actor Transform Set prepares the signal data

2 Blocks

2-48

before the Unreal Engine 3D visualization environment receives it. To check the block execution
order, right-click the blocks and select Properties. On the General tab, confirm these Priority
settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Actor Transform Set — -1

For more information about execution order, see “Control and Display Execution Order” (Simulink).

Ports
Input

Translation — Actor translation
array

Actor translation, in m. Array dimensions are number of parts per actor-by-3.

• Translation(1,1), Translation(1,2), and Translation(1,3) — Vehicle displacement
along world X-, Y, and Z- axes, respectively.

• Translation(...,1), Translation(...,2), and Translation(...,3) — Actor
displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-,
Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Translation signal:

• Dimensions are [5x3].
• Contains translation information according to the axle and wheel locations, relative to vehicle.

Translation =

Xv Yv Zv
XFL YFL ZFL
XFR YFR ZFR
XRL YRL ZRL
XRR YRR ZRR

Translation Array Element
Vehicle, Xv Translation(1,1)
Vehicle, Yv Translation(1,2)
Vehicle, Zv Translation(1,3)
Front left wheel, XFL Translation(2,1)
Front left wheel, YFL Translation(2,2)
Front left wheel, ZFL Translation(2,3)
Front right wheel, XFR Translation(3,1)
Front right wheel, YFR Translation(3,2)
Front right wheel, ZFR Translation(3,3)
Rear left wheel, XRL Translation(4,1)

 Simulation 3D Actor Transform Set

2-49

Translation Array Element
Rear left wheel, YRL Translation(4,2)
Rear left wheel, ZRL Translation(4,3)
Rear right wheel, XRR Translation(5,1)
Rear right wheel, YRR Translation(5,2)
Rear right wheel, ZRR Translation(5,3)

Rotation — Actor rotation
array

Actor rotation across a [-pi/2, pi/2] range, in rad. Array dimensions are number of parts per actor-
by-3.

• Rotation(1,1), Rotation(1,2), and Rotation(1,3) — Vehicle rotation about vehicle-fixed
pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

• Rotation(...,1), Rotation(...,2), and Rotation(...,3) — Actor rotation about vehicle-
fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Rotation signal:

• Dimensions are [5x3].
• Contains rotation information according to the axle and wheel locations.

Rotation =

Pitchv Rollv Yawv
PitchFL RollFL YawFL
PitchFR RollFR YawFR
PitchRL RollRL YawRL
PitchRR RollRR YawRR

Rotation Array Element
Vehicle, Pitchv Rotation(1,1)
Vehicle, Rollv Rotation(1,2)
Vehicle, Yawv Rotation(1,3)
Front left wheel, PitchFL Rotation(2,1)
Front left wheel, RollFL Rotation(2,2)
Front left wheel, YawFL Rotation(2,3)
Front right wheel, PitchFR Rotation(3,1)
Front right wheel, RollFR Rotation(3,2)
Front right wheel, YawFR Rotation(3,3)
Rear left wheel, PitchRL Rotation(4,1)
Rear left wheel, RollRL Rotation(4,2)
Rear left wheel, YawRL Rotation(4,3)
Rear right wheel, PitchRR Rotation(5,1)

2 Blocks

2-50

Rotation Array Element
Rear right wheel, RollRR Rotation(5,2)
Rear right wheel, YawRR Rotation(5,3)

Scale — Actor scale
array

Actor scale. Array dimensions are number of number of parts per actor-by-3.

• Scale(1,1), Scale(1,2), and Scale(1,3) — Vehicle scale along world X-, Y-, and Z- axes,
respectively.

• Scale(...,1), Scale(...,2), and Scale(...,3) — Actor scale along world X-, Y-, and Z-
axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Scale signal:

• Dimensions are [5x3].
• Contains scale information according to the axle and wheel locations.

Scale =

XVscale YVscale ZVscale
XFLscale YFLscale ZFLscale
XFRscale YFRscale ZFRscale
XRLscale YRLscale ZRLscale
XRRscale YRRscale ZRRscale

Scale Array Element
Vehicle, Xvscale

Scale(1,1)
Vehicle, Yvscale

Scale(1,2)
Vehicle, Zvscale

Scale(1,3)
Front left wheel, XFLscale

Scale(2,1)
Front left wheel, YFLscale

Scale(2,2)
Front left wheel, ZFLscale

Scale(2,3)
Front right wheel, XFRscale

Scale(3,1)
Front right wheel, YFRscale

Scale(3,2)
Front right wheel, ZFRscale

Scale(3,3)
Rear left wheel, XRLscale

Scale(4,1)
Rear left wheel, YRLscale

Scale(4,2)
Rear left wheel, ZRLscale

Scale(4,3)
Rear right wheel, XRRscale

Scale(5,1)
Rear right wheel, YRRscale

Scale(5,2)
Rear right wheel, ZRRscale

Scale(5,3)

 Simulation 3D Actor Transform Set

2-51

Parameters
Actor Setup

Tag for actor in 3D scene, ActorTag — Name
SimulinkActor1 (default) | character vector

Actor name.

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components.
Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor
when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor
Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Number of parts per actor to set, NumberOfParts — Name
1 (default) | scalar

Number of parts per actor. Actors are scene objects that support 3D translation, rotation, and scale.
Parts are actor components. Components do not exist by themselves; they are associated with an
actor. Typically, a vehicle actor with a body and four wheels has 5 parts.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor
when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor
Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Initial Values

Initial array values to translate actor per part, Translation — Actor initial position
[0 0 0] (default) | array

Actor initial position, along world X-, Y-, and Z- axes, in m.

Array dimensions are number of parts per actor-by-3.

• Translation(1,1), Translation(1,2), and Translation(1,3) — Vehicle displacement
along world X-, Y, and Z- axes, respectively.

• Translation(...,1), Translation(...,2), and Translation(...,3) — Actor
displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-,
Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

• Dimensions are [5x3].
• Contains translation information according to the axle and wheel locations, relative to vehicle.

Translation =

Xv Yv Zv
XFL YFL ZFL
XFR YFR ZFR
XRL YRL ZRL
XRR YRR ZRR

2 Blocks

2-52

Translation Array Element
Vehicle, Xv Translation(1,1)
Vehicle, Yv Translation(1,2)
Vehicle, Zv Translation(1,3)
Front left wheel, XFL Translation(2,1)
Front left wheel, YFL Translation(2,2)
Front left wheel, ZFL Translation(2,3)
Front right wheel, XFR Translation(3,1)
Front right wheel, YFR Translation(3,2)
Front right wheel, ZFR Translation(3,3)
Rear left wheel, XRL Translation(4,1)
Rear left wheel, YRL Translation(4,2)
Rear left wheel, ZRL Translation(4,3)
Rear right wheel, XRR Translation(5,1)
Rear right wheel, YRR Translation(5,2)
Rear right wheel, ZRR Translation(5,3)

Initial array values to rotate actor per part, Rotation — Actor initial rotation
[0 0 0] (default) | array

Actor initial rotation about world X-, Y-, and Z- axes across a [-pi/2, pi/2] range, in rad.

Array dimensions are number of parts per actor-by-3.

• Rotation(1,1), Rotation(1,2), and Rotation(1,3) — Vehicle rotation about vehicle-fixed
pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

• Rotation(...,1), Rotation(...,2), and Rotation(...,3) — Actor rotation about vehicle-
fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

• Dimensions are [5x3].
• Contains rotation information according to the axle and wheel locations.

Rotation =

Pitchv Rollv Yawv
PitchFL RollFL YawFL
PitchFR RollFR YawFR
PitchRL RollRL YawRL
PitchRR RollRR YawRR

Rotation Array Element
Vehicle, Pitchv Rotation(1,1)
Vehicle, Rollv Rotation(1,2)
Vehicle, Yawv Rotation(1,3)

 Simulation 3D Actor Transform Set

2-53

Rotation Array Element
Front left wheel, PitchFL Rotation(2,1)
Front left wheel, RollFL Rotation(2,2)
Front left wheel, YawFL Rotation(2,3)
Front right wheel, PitchFR Rotation(3,1)
Front right wheel, RollFR Rotation(3,2)
Front right wheel, YawFR Rotation(3,3)
Rear left wheel, PitchRL Rotation(4,1)
Rear left wheel, RollRL Rotation(4,2)
Rear left wheel, YawRL Rotation(4,3)
Rear right wheel, PitchRR Rotation(5,1)
Rear right wheel, RollRR Rotation(5,2)
Rear right wheel, YawRR Rotation(5,3)

Initial array values to scale actor per part, Scale — Actor initial scale
[1 1 1] (default) | array

Actor initial scale.

Array dimensions are number of number of parts per actor-by-3.

• Scale(1,1), Scale(1,2), and Scale(1,3) — Vehicle scale along world X-, Y, and Z- axes,
respectively.

• Scale(...,1), Scale(...,2), and Scale(...,3) — Actor scale along world X-, Y, and Z-
axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

• Dimensions are [5x3].
• Contains scale information according to the axle and wheel locations.

Scale =

XVscale YVscale ZVscale
XFLscale YFLscale ZFLscale
XFRscale YFRscale ZFRscale
XRLscale YRLscale ZRLscale
XRRscale YRRscale ZRRscale

Scale Array Element Scale Axis
Vehicle, Xvscale

Scale(1,1) World X-axis
Vehicle, Yvscale

Scale(1,2) World Y-axis
Vehicle, Zvscale

Scale(1,3) World Z-axis
Front left wheel, XFLscale

Scale(2,1) World X-axis
Front left wheel, YFLscale

Scale(2,2) World Y-axis

2 Blocks

2-54

Scale Array Element Scale Axis
Front left wheel, ZFLscale

Scale(2,3) World Z-axis
Front right wheel, XFRscale

Scale(3,1) World X-axis
Front right wheel, YFRscale

Scale(3,2) World Y-axis
Front right wheel, ZFRscale

Scale(3,3) World Z-axis
Rear left wheel, XRLscale

Scale(4,1) World X-axis
Rear left wheel, YRLscale

Scale(4,2) World Y-axis
Rear left wheel, ZRLscale

Scale(4,3) World Z-axis
Rear right wheel, XRRscale

Scale(5,1) World X-axis
Rear right wheel, YRRscale

Scale(5,2) World Y-axis
Rear right wheel, ZRRscale

Scale(5,3) World Z-axis

Sample time — Sample time
-1 (default) | scalar

Sample time, Ts. The graphics frame rate is the inverse of the sample time.

Version History
Introduced in R2022b

See Also
Simulation 3D Actor Transform Get | Simulation 3D Camera Get | Simulation 3D Scene Configuration

 Simulation 3D Actor Transform Set

2-55

Simulation 3D Camera Get
Camera image

Libraries:
Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Camera Get block provides an interface to an ideal camera in the 3D visualization
environment. The image output is a red, green, and blue (RGB) array.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, ensure that the Simulation 3D Scene Configuration block is in
your model.

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D
Camera Get block. That way, the Unreal Engine 3D visualization environment prepares the data
before the Simulation 3D Camera Get block receives it. To check the block execution order, right-click
the blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Camera Get — 1

For more information about execution order, see “Control and Display Execution Order” (Simulink).

Ports
Output

Image — 3D output camera image
m-by-n-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical
resolution of the image, and n is the horizontal resolution of the image.
Data Types: int8 | uint8

Parameters
Mounting

Sensor identifier — Number to identify unique sensor
0 (default) | positive integer

Unique sensor identifier, specified as a positive integer. This number is used to identify a specific
sensor. The sensor identifier distinguishes between sensors in a multi-sensor system.

2 Blocks

2-56

Example: 2

Vehicle name — Name of a vehicle
Scene Origin (default) | character vector

Vehicle name. Block provides a list of vehicles in the model. If you select Scene Origin, the block
places a sensor at the scene origin.
Example: SimulinkVehicle1

Vehicle mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper | Right mirror | Left mirror | Rearview
mirror | Hood center | Roof center

Sensor mounting location.

• When Vehicle name is Scene Origin, the block mounts the sensor to the origin of the scene,
and Mounting location can be set to Origin only. During simulation, the sensor remains
stationary.

• When Vehicle name is the name of a vehicle (for example, SimulinkVehicle1) the block
mounts the sensor to one of the predefined mounting locations described in the table. During
simulation, the sensor travels with the vehicle.

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground and at the geometric
center of the vehicle

[0, 0, 0]

 Simulation 3D Camera Get

2-57

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Front bumper Forward-facing sensor mounted
to the front bumper

[0, 0, 0]

Rear bumper Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]

2 Blocks

2-58

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Right mirror Downward-facing sensor
mounted to the right side-view
mirror

[0, –90, 0]

Left mirror Downward-facing sensor
mounted to the left side-view
mirror

[0, –90, 0]

Rearview mirror Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]

 Simulation 3D Camera Get

2-59

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Hood center Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]

Roof center Forward-facing sensor mounted
to the center of the roof

[0, 0, 0]

The (X, Y, Z) location of the sensor relative to the vehicle depends on the vehicle type. To specify the
vehicle type, use the Type parameter of the Simulation 3D Scene Configuration block to which you
are mounting. The tables show the X, Y, and Z locations of sensors in the vehicle coordinate system.
In this coordinate system:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up from the ground.
• Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-

axis, and Z-axis, respectively. When looking at a vehicle from the top down, then the yaw angle
(that is, the orientation angle) is counterclockwise-positive, because you are looking in the
negative direction of the axis.

2 Blocks

2-60

Box Truck — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 5.10 0 0.60
Rear bumper –5 0 0.60
Right mirror 2.90 1.60 2.10
Left mirror 2.90 –1.60 2.10
Rearview mirror 2.60 0.20 2.60
Hood center 3.80 0 2.10
Roof center 1.30 0 4.20

Hatchback — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 1.93 0 0.51
Rear bumper –1.93 0 0.51
Right mirror 0.43 –0.84 1.01
Left mirror 0.43 0.84 1.01
Rearview mirror 0.32 0 1.27
Hood center 1.44 0 1.01
Roof center 0 0 1.57

Muscle Car — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.47 0 0.45
Rear bumper –2.47 0 0.45
Right mirror 0.43 –1.08 1.01
Left mirror 0.43 1.08 1.01
Rearview mirror 0.32 0 1.20
Hood center 1.28 0 1.14
Roof center –0.25 0 1.58

 Simulation 3D Camera Get

2-61

Sedan — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.42 0 0.51
Rear bumper –2.42 0 0.51
Right mirror 0.59 –0.94 1.09
Left mirror 0.59 0.94 1.09
Rearview mirror 0.43 0 1.31
Hood center 1.46 0 1.11
Roof center –0.45 0 1.69

Small Pickup Truck — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 3.07 0 0.51
Rear bumper –3.07 0 0.51
Right mirror 1.10 –1.13 1.52
Left mirror 1.10 1.13 1.52
Rearview mirror 0.85 0 1.77
Hood center 2.22 0 1.59
Roof center 0 0 2.27

Sport Utility Vehicle — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.42 0 0.51
Rear bumper –2.42 0 0.51
Right mirror 0.60 –1 1.35
Left mirror 0.60 1 1.35
Rearview mirror 0.39 0 1.55
Hood center 1.58 0 1.39
Roof center –0.56 0 2

Example: Origin

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location.

Relative translation [X, Y, Z] — Translation offset from mounting location
[0,0,0] (default) | real-valued 1-by-3 vector

Specify a translation offset from the mount location, about the vehicle coordinate system X, Y, and Z
axes. Units are in meters.

2 Blocks

2-62

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up.

Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] — Rotational offset from mounting location
[0,0,0] (default) | real-valued 1-by-3 vector

Specify a rotational offset from the mounting location, about the vehicle coordinate system X, Y, and
Z axes. Units are in degrees.

• Roll angle is the angle of rotation about the X-axis of the vehicle coordinate system. A positive roll
angle corresponds to a clockwise rotation when looking in the positive direction of the X-axis.

• Pitch angle is the angle of rotation about the Y-axis of the vehicle coordinate system. A positive
pitch angle corresponds to a clockwise rotation when looking in the positive direction of the Y-
axis.

• Yaw angle is the angle of rotation about the Z of the vehicle coordinate system. A positive yaw
angle corresponds to a clockwise rotation when looking in the positive direction of the Z-axis.

Example: [0,0,10]

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds. The 3D simulation environment frame rate is the inverse of the
sample time.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block.

Parameter

Horizontal resolution — Pixels
uint32(1280) (default) | scalar

Horizontal image resolution, in pixels.

Vertical resolution — Pixels
uint32(720) (default) | scalar

Vertical image resolution, in pixels.

Horizontal field of view — Field of view
single(60) (default) | scalar

Horizontal field of view (FOV), in deg.

 Simulation 3D Camera Get

2-63

Version History
Introduced in R2022b

See Also
Simulation 3D Actor Transform Get | Simulation 3D Actor Transform Set | Simulation 3D Scene
Configuration

2 Blocks

2-64

Simulation 3D Scene Configuration
Scene configuration for 3D simulation environment

Libraries:
Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Automated Driving Toolbox / Simulation 3D
UAV Toolbox / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Scene Configuration block implements a 3D simulation environment that is
rendered by using the Unreal Engine from Epic Games. integrates the 3D simulation environment
with Simulink so that you can query the world around the vehicle and virtually test perception,
control, and planning algorithms. Using this block, you can also control the position of the sun and
the weather conditions of a scene. For more details, see Sun Position and Weather on page 2-77.

You can simulate from a set of prebuilt scenes or from your own custom scenes. Scene customization
requires the support package. For more details, see .

Note The Simulation 3D Scene Configuration block must execute after blocks that send data to the
3D environment and before blocks that receive data from the 3D environment. To verify the execution
order of such blocks, right-click the blocks and select Properties. Then, on the General tab, confirm
these Priority settings:

• For blocks that send data to the 3D environment, such as Simulation 3D Vehicle with Ground
Following blocks, Priority must be set to -1. That way, these blocks prepare their data before the
3D environment receives it.

• For the Simulation 3D Scene Configuration block in your model, Priority must be set to 0.
• For blocks that receive data from the 3D environment, such as blocks, Priority must be set to 1.

That way, the 3D environment can prepare the data before these blocks receive it.

For more information about execution order, see “Control and Display Execution Order” (Simulink).

Parameters
Scene

Scene Selection

Scene source — Source of scene

Default Scenes (default) | Unreal Executable | Unreal Editor

Source of the scene in which to simulate, specified as one of the options in the table.

 Simulation 3D Scene Configuration

2-65

Option Description
Default Scenes Simulate in one of the default, prebuilt scenes

specified in the Scene name parameter.
Unreal Executable Simulate in a scene that is part of an Unreal

Engine executable file. Specify the executable file
in the Project name parameter. Specify the
scene in the Scene parameter.

Select this option to simulate in custom scenes
that have been packaged into an executable for
faster simulation.

Unreal Editor Simulate in a scene that is part of an Unreal
Engine project (.uproject) file and is open in
the Unreal® Editor. Specify the project file in the
Project parameter.

Select this option when developing custom
scenes. By clicking Open Unreal Editor, you can
co-simulate within Simulink and the Unreal
Editor and modify your scenes based on the
simulation results.

Scene name — Name of prebuilt 3D scene

Empty scene (default)

Name of the prebuilt 3D scene in which to simulate, specified as Empty Scene (Empty Scene).

Dependencies

To enable this parameter, set Scene source to Default Scenes.

Project name — Name of Unreal Engine executable file

VehicleSimulation.exe (default) | valid executable file name

Name of the Unreal Engine executable file, specified as a valid executable project file name. You can
either browse for the file or specify the full path to the project file, using backslashes. To specify a
scene from this file to simulate in, use the Scene parameter.

By default, Project name is set to VehicleSimulation.exe, which is on the MATLAB search path.
Example: C:\Local\WindowsNoEditor\AutoVrtlEnv.exe

Dependencies

To enable this parameter, set Scene source to Unreal Executable.

Scene — Name of scene from executable file

/Game/Maps/HwStrght (default) | path to valid scene name

Name of a scene from the executable file specified by the Project name parameter, specified as a
path to a valid scene name.

2 Blocks

2-66

When you package scenes from an Unreal Engine project into an executable file, the Unreal Editor
saves the scenes to an internal folder within the executable file. This folder is located at the path /
Game/Maps. Therefore, you must prepend /Game/Maps to the scene name. You must specify this
path using forward slashes. For the file name, do not specify the .umap extension. For example, if the
scene from the executable in which you want to simulate is named myScene.umap, specify Scene
as /Game/Maps/myScene.

Alternatively, you can browse for the scene in the corresponding Unreal Engine project. These scenes
are typically saved to the Content/Maps subfolder of the project. This subfolder contains all the
scenes in your project. The scenes have the extension .umap. Select one of the scenes that you
packaged into the executable file specified by the Project name parameter. Use backward slashes
and specify the .umap extension for the scene.

By default, Scene is set to /Game/Maps/HwStrght, which is a scene from the default
VehicleSimulation.exe executable file specified by the Project name parameter. This scene
corresponds to the prebuilt Straight Road scene.
Example: /Game/Maps/scene1
Example: C:\Local\myProject\Content\Maps\scene1.umap

Dependencies

To enable this parameter, set Scene source to Unreal Executable.

Project — Name of Unreal Engine project file

valid project file name

Name of the Unreal Engine project file, specified as a valid project file name. You can either browse
for the file or specify the full path to the file, using backslashes. The file must contain no spaces. To
simulate scenes from this project in the Unreal Editor, click Open Unreal Editor. If you have an
Unreal Editor session open already, then this button is disabled.

To run the simulation, in Simulink, click Run. Before you click Play in the Unreal Editor, wait until
the Diagnostic Viewer window displays this confirmation message:
In the Simulation 3D Scene Configuration block, you set the scene source to 'Unreal Editor'.
In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated the scene actors, including the vehicles and
cameras, in the Unreal Engine 3D environment. If you click Play before the Diagnostic Viewer
window displays this confirmation message, Simulink might not instantiate the actors in the Unreal
Editor.

Dependencies

To enable this parameter, set Scene source to Unreal Editor.

Scene Parameters

Scene view — Configure placement of virtual camera that displays scene

Scene Origin | vehicle name

Configure the placement of the virtual camera that displays the scene during simulation.

 Simulation 3D Scene Configuration

2-67

• If your model contains no blocks, then during simulation, you view the scene from a camera
positioned at the scene origin.

• If your model contains at least one vehicle block, then by default, you view the scene from behind
the first vehicle that was placed in your model. To change the view to a different vehicle, set
Scene view to the name of that vehicle. The Scene view parameter list is populated with all the
Name parameter values of the vehicle blocks contained in your model.

If you add a Simulation 3D Scene Configuration block to your model before adding any vehicle blocks,
the virtual camera remains positioned at the scene. To reposition the camera to follow a vehicle,
update this parameter.

When Scene view is set to a vehicle name, during simulation, you can change the location of the
camera around the vehicle.

To smoothly change the camera views, use these key commands.

Key Camera View
1 Back left
2 Back
3 Back right
4 Left
5 Internal
6 Right
7 Front left
8 Front
9 Front right

2 Blocks

2-68

Key Camera View
0 Overhead View Animated GIF

For additional camera controls, use these key commands.

Key Camera Control
Tab Cycle the view between all vehicles in the scene.

View Animated GIF

 Simulation 3D Scene Configuration

2-69

Key Camera Control
Mouse scroll wheel Control the camera distance from the vehicle.

View Animated GIF

L Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

• Position lag, based on the vehicle translational acceleration
• Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF

2 Blocks

2-70

Key Camera Control
F Toggle the free camera mode on or off. When you enable the free camera

mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

View Animated GIF

Sample time — Sample time of visualization engine

(default) | scalar greater than or equal to 0.01

Sample time, Ts, of the visualization engine, specified as a scalar greater than or equal to 0.01. Units
are in seconds.

The graphics frame rate of the visualization engine is the inverse of the sample time. For example, if
Sample time is 1/60, then the visualization engine solver tries to achieve a frame rate of 60 frames
per second. However, the real-time graphics frame rate is often lower due to factors such as graphics
card performance and model complexity.

By default, blocks that receive data from the visualization engine, such as blocks, inherit this sample
rate.

Display 3D simulation window — Unreal Engine visualization

on (default) | off

Select whether to run simulations in the 3D visualization environment without visualizing the results,
that is, in headless mode.

Consider running in headless mode in these cases:

• You want to run multiple 3D simulations in parallel to test models in different Unreal Engine
scenarios.

Dependencies

To enable this parameter, set Scene source to Default Scenes or Unreal Executable.

 Simulation 3D Scene Configuration

2-71

Weather

Override scene weather — Control the scene weather and sun position

off (default) | on

Select whether to control the scene weather and sun position during simulation. Use the enabled
parameters to change the sun position, clouds, fog, and rain.

This table summarizes sun position settings for specific times of day.

Time of Day Settings Unreal Editor Environment
Midnight Sun altitude: -90

Sun azimuth: 180

Sunrise in the
north

Sun altitude: 0

Sun azimuth: 180

Noon Sun altitude: 90

Sun azimuth: 180

This table summarizes settings for specific cloud conditions.

2 Blocks

2-72

Cloud
Condition

Settings Unreal Editor Environment

Clear Cloud opacity: 0

Heavy Cloud opacity: 85

This table summarizes settings for specific fog conditions.

Fog Condition Settings Unreal Editor Environment
None Fog density: 0

Heavy Fog density: 100

This table summarizes settings for specific rain conditions.

 Simulation 3D Scene Configuration

2-73

Rain Condition Settings Unreal Editor Environment
Light Cloud opacity: 10

Rain density: 25

Heavy Cloud opacity: 10

Rain density: 80

Sun altitude — Altitude angle between sun and horizon

40 (default) | any value between -90 and 90

Altitude angle in a vertical plane between the sun's rays and the horizontal projection of the rays, in
deg.

Use the Sun altitude and Sun azimuth parameters to control the time of day in the scene. For
example, to specify sunrise in the north, set Sun altitude to 0 deg and Sun azimuth to 180 deg.

Dependencies

To enable this parameter, select Override scene weather.

Sun azimuth — Azimuth angle from south to horizontal projection of the sun ray

90 (default) | any value between 0 and 360

Azimuth angle in the horizontal plane measured from the south to the horizontal projection of the sun
rays, in deg.

2 Blocks

2-74

Use the Sun altitude and Sun azimuth parameters to control the time of day in the scene. For
example, to specify sunrise in the north, set Sun altitude to 0 deg and Sun azimuth to 180 deg.

Dependencies

To enable this parameter, select Override scene weather.

Cloud opacity — Unreal Editor Cloud Opacity global actor target value

10 (default) | any value between 0 and 100

Parameter that corresponds to the Unreal Editor Cloud Opacity global actor target value, in percent.
Zero is a cloudless scene.

Use the Cloud opacity and Cloud speed parameters to control clouds in the scene.

Dependencies

To enable this parameter, select Override scene weather.

Cloud speed — Unreal Editor Cloud Speed global actor target value

1 (default) | any value between -100 and 100

Parameter that corresponds to the Unreal Editor Cloud Speed global actor target value. The clouds
move from west to east for positive values and east to west for negative values.

 Simulation 3D Scene Configuration

2-75

Use the Cloud opacity and Cloud speed parameters to control clouds in the scene.

Dependencies

To enable this parameter, select Override scene weather.

Fog density — Unreal Editor Set Fog Density and Set Start Distance target values

0 (default) | any value between 0 and 100

Parameter that corresponds to the Unreal Editor Set Fog Density and Set Start Distance target
values, in percent.

Dependencies

To enable this parameter, select Override scene weather.

Rain density — Unreal Editor local actor controlling rain density, wetness, rain puddles, and ripples

0 (default) | any value between 0 and 100

Parameter corresponding to the Unreal Editor local actor that controls rain density, wetness, rain
puddles, and ripples, in percent.

2 Blocks

2-76

Use the Cloud opacity and Rain density parameters to control rain in the scene.

Dependencies

To enable this parameter, select Override scene weather.

More About
Sun Position and Weather

To control the scene weather and sun position, on the Weather tab, select Override scene weather.
Use the enabled parameters to change the sun position, clouds, fog, and rain during the simulation.

Sun Position

Use Sun altitude and Sun azimuth to control the sun position.

• Sun altitude — Altitude angle in a vertical plane between the sun rays and the horizontal
projection of the rays.

• Sun azimuth — Azimuth angle in the horizontal plane measured from the south to the horizontal
projection of the sun rays.

This table summarizes sun position settings for specific times of day.

 Simulation 3D Scene Configuration

2-77

Time of Day Settings Unreal Editor Environment
Midnight Sun altitude: -90

Sun azimuth: 180

Sunrise in the
north

Sun altitude: 0

Sun azimuth: 180

Noon Sun altitude: 90

Sun azimuth: 180

Clouds

Use Cloud opacity and Cloud speed to control clouds in the scene.

• Cloud opacity — Unreal Editor Cloud Opacity global actor target value. Zero is a cloudless
scene.

• Cloud speed — Unreal Editor Cloud Speed global actor target value. The clouds move from west
to east for positive values and east to west for negative values.

2 Blocks

2-78

This table summarizes settings for specific cloud conditions.

Cloud
Condition

Settings Unreal Editor Environment

Clear Cloud opacity: 0

Heavy Cloud opacity: 85

Fog

Use Fog density to control fog in the scene. Fog density corresponds to the Unreal Editor Set Fog
Density.

 Simulation 3D Scene Configuration

2-79

This table summarizes settings for specific fog conditions.

Fog Condition Settings Unreal Editor Environment
None Fog density: 0

Heavy Fog density: 100

Rain

Use Cloud opacity and Rain density to control rain in the scene.

• Cloud opacity — Unreal Editor Cloud Opacity global actor target value.
• Rain density — Unreal Editor local actor that controls rain density, wetness, rain puddles, and

ripples.

2 Blocks

2-80

This table summarizes settings for specific rain conditions.

Rain Condition Settings Unreal Editor Environment
Light Cloud opacity: 10

Rain density: 25

Heavy Cloud opacity: 10

Rain density: 80

Version History
Introduced in R2022b

 Simulation 3D Scene Configuration

2-81

Simulation 3D Actor
Define actors in Unreal Engine viewer

Libraries:
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Actor block implements a generic actor in the Unreal Engine viewer. You can use
this block to specify actor name and source file, initialize the actor, and define how the actor is
created and behaves during simulation.

Ports
Input

Instance — Instance number of actor
real integer

Instance number of actor, specified as a real integer.

• For positive values, a new actor is created if it has not been created already. The reference block
refers to this actor if the actor is present in the world.

• For negative values, actor instances are deleted, if they exist. For example, instance 1 is deleted if
the value of this port is -1 at a given time step.

Dependencies

This input is visible when the operating mode of the block is set to either Create at step or
Reference by instance number.

Output

Valid — Validity of specified actor
false (default) | true

Validity of the specified actor, returned as false if the specified actor cannot be found in the world
or true if the actor is found.

Parameters
Main

Actor Name — Name of actor
Sim3dActor1 (default) | string

Name of the root actor for the current Simulation 3D Actor block.

2 Blocks

2-82

Parent Name — Parent of actor
Scene Origin (default) | string

Name of the parent actor of the actor, specified as a string.

Operation — Operating mode of block
Create at setup (default) | Create at step | Reference by name | Reference by
instance number

Operating mode that determines block behavior, specified as one of these options.

• Create at setup – Use this option to create actors in the scene. The actors are created during
game setup, before the simulation runs. You can also control the simulation of these actors using
the Input, Output, and Event ports.

• Create at step – Use this option to dynamically create actors when the simulation is running.
An Instance input port of the type int is created in this mode, and the actors are dynamically
generated based on the values input to the block. If the value of Instance is greater than zero, an
actor with the name 'Actor name + Instance value' is created. The name of the actor is
derived from 'Actor Name' in the block mask. The instance value is the current value of the
port. Unlike the Create at setup option, you cannot control the actors created using with this
option selected in the block mask. You can only create actors in the scene.

• Reference by name – Use this option to refer to an actor in the scene using Actor Name, and
control this actor's simulation using the inputs of the block. Get data of the actor using the outputs
or events. This also provides a Valid output port.

If an actor with the specified name is not present, the Valid port will return false or 0. In this
case, default values will be passed as output for rest of the out ports (if any). Use the Valid port
to verify whether the other outputs generated are currently valid or not.

Note Source file and Initialization script parameters are unavailable in the Reference by
name operating mode.

• Reference by instance number – Use this option to refer to an instance created via a
different actor block. Similar to the Create at step operating mode, this option creates an
Instance input in the block, and the effective actor name 'Actor name + Instance value' is
used to reference the actor.

If an actor with the generated name is not present, the Valid port returns false or 0. In this case,
default values are passed as output for rest of the output ports, if any. Use the Valid port to verify
whether the other outputs generated are currently valid or not.

Note Source file and Initialization script parameters are unavailable in the Reference by
instance number operating mode.

Dependencies

The Transform tab is available if you set Operation as either Create at setup or Create at
step.

Source file — File from which actors are sourced
string

File from which actors are sourced, specified as a string.

 Simulation 3D Actor

2-83

This option loads a 3D file or imports a sim3d.Actor object, including child actor objects from MAT
or STL files.

Alternatively, the Select button can also be used to select a file from the Windows file browser.

Initialization script — Text area to set properties of actor
MATLAB script

Text area to set properties of the actor created by the block, specified as a MATLAB script. The order
of actor creation is:

1 Root actor with specified name is created.
2 The Source file is loaded into the root actor.
3 The Initialization script runs.

Use the name Actor when modifying the root actor of the block. Actor is a reserved handle in the
initialization script. Otherwise, use the findBy function to get the actor handle of a different name,
for example, one of the child actors for example. Then use the retrieved actor handle to initialize that
specific actor.

Sample time — Sample time
-1 (default) | scalar

Sample time, Ts. The graphics frame rate is the inverse of the sample time.

Transform

The Transform tab is available if you set Operation as either Create at setup or Create at
step.

Translation — Relative translation
[0,0,0] (default) | real 1-by-3 vector

Translation (x,y,z) of the actor object relative to its parent actor, specified as a real 1-by-3 vector, in
meters.

Rotation — Relative rotation
[0,0,0] (default) | real 1-by-3 vector

Rotation (roll, pitch, yaw) of the actor object relative to its parent actor, specified as a real 1-by-3
vector, in radians.

Scale — Relative scaling
[1,1,1] (default) | real 1-by-3 vector

Relative scaling in x, y and z coordinates, specified as a real 1-by-3 vector.

Inputs

Input ports — List of user-selected input ports
text area

This text area lists the user-selected input ports of the block and provides a button that opens the
port selector app, which you can use to modify the input ports. Each line in the text area represents
one block port.

2 Blocks

2-84

You can manually modify the ports using the text area, but using the port selector app is
recommended for choosing the ports.

Outputs

Output ports — List of user-selected output ports
text area

This text area lists the user-selected output ports of the block and provides a button that opens the
port selector app, which you can use to modify the output ports. Each line in the text area represents
one block port.

You can manually modify the ports using the text area, but using the port selector app is
recommended for choosing the ports.

More About
Operating Modes

• Create at setup – Use this operating mode to create actors before simulation begins and
control the actors when the simulation is running. You can control actors in a simulation by adding
input ports to the block using the Inputs tab in the block dialog. Similarly, you can read specific
actor properties using the Outputs tab to create custom output ports for the block.

The Simulation 3D Actor block implements these steps during actor creation:

1 An empty root actor is created with an Actor Name equal to the name specified in the block
dialog box.

2 The source file is used to load actors, meshes, or 3D objects into the root actor.
3 The initialization script is run to initialize the actors that have been created.

Note The initialization script and the source file are optional. However, if both are empty, the
block will only create an empty actor in the scene.

You can use the load function in the initialization script as an alternative to the source file. This
command has the same effect as specifying a source file path.

load(actor, "source_file_path")
• Create at step – Use this operating mode to create actors dynamically during simulation

runtime. When the Instance port is a nonzero number, an instance of the specified actors is
created. If the instance input is unique, it will only create a new instance for the first step in which
it is equal to the input number.

When this operating mode is selected, the block creates actor instances by creating an empty root
actor is created with name equal to specified values of Actor Name + Instance.

So, if the actor name specified in the dialog box is ActorInst, and value of Instance is specified
as 1, then the ActorName for the new instance will be equal to ActorInst1. This process is
followed for every new instance that is created.

Note The Valid output port for this mode returns 0 (false) by default and returns 1 (true) after
an instance has been created. The value remains true even if all instances created by this block

 Simulation 3D Actor

2-85

are deleted. So, you can use the valid port to check if an instance has been created. Otherwise this
output can be ignored.

• Reference by name – Use this operating mode to control an actor that is already present in the
scene. The block looks for an actor with the actor name specified in the block dialog. If found, the
block controls that specific actor using the specified input ports. You can control the actor in a
simulation by adding input ports to the block using the Inputs tab in the block dialog.

• Reference by instance number – Use this operating mode to control an actor that is already
present in the scene. The block looks for an actor with the actor name specified in the block
dialog. If found, the block controls that specific actor using the specified input ports. You can
control the actor in a simulation by adding input ports to the block using the Inputs tab in the
block dialog.

The difference between the Reference by name and Reference by instance number
operating modes is that, based on the value of the Instance input port, the Simulation 3D Actor block
can control multiple actors during simulation. However, during individual time steps, the block still
controls a single actor. In the Reference by name operating mode, the block can control only a
single actor during the entire simulation.

Input, Output, and Event Port Modification

Use the Simulation 3D Actor block to control simulation during runtime by modifying the block ports.
To control actors during simulation, you can use the Inputs tab of the block mask to add input ports
to the block which can then be used to control specific actors.

Similarly, you can use the output and event ports of the block mask to get data about the actors from
Unreal Engine. The output ports can be modified from the Outputs and Event tabs in the dialog.
Selecting event ports on the Event tab creates corresponding output ports on the block.

The Browse buttons in Inputs, Outputs, and Events text area opens up the port selection app,
which you can use to add or delete input and output ports. Although ports can be modified manually,
the suggested method is to use the port selection app.

2 Blocks

2-86

This table provides the possible input, output, and event “Properties” on page 3-179 of
sim3d.Actor.

Type Properties
Input and output properties • Translation

• Rotation
• Scale
• Color
• Transparency
• Shininess
• Metallic
• Tessellation
• Mass
• CenterOfMass
• Collisions

 Simulation 3D Actor

2-87

Type Properties
Events properties • Hit Event

• HitEvent
• HitSelfID
• HitLocation
• HitOtherID
• HitOtherActorName

• Begin Overlap Event

• BeginOverlapEvent
• BeginOverlapSelfID
• BeginOverlapOtherID
• BeginOverlapOtherActorName

• End Overlap Event

• EndOverlapEvent
• EndOverlapSelfID
• EndOverlapOtherID
• EndOverlapOtherActorName

• Click Event

• ClickEvent
• ClickActorID
• ClickLocation
• ClickActorName

Actors can be controlled for all operating modes, except Create at step. For all other operating
modes, these are some special considerations.

• Create at setup – The port selection app in this mode lists the entire tree hierarchy of actors
created in the actor block, and you can use the block ports to control the simulation of the parent
as well as child actors. These actors are present throughout the entire simulation, and the outputs
of the blocks are always valid.

• Reference by name – In this operating mode, the block can only control a single actor during
the simulation, specified using the actor name. If the actor is not present in the world, the block
inputs are ignored, the Valid output is false, and the remaining outputs are default values
(invalid).

• Reference by instance number – In this operating mode, the Simulation 3D Actor block only
controls one actor per time step. In different time steps the block can control different actor based
on the value of the Instance input. The port selection app for this operating mode uses * as a
placeholder for the actor name. The actor being controlled has the name as a concatenated string:
actor name (in block dialog) + current instance input value. The * wildcard only applies to the
Reference by instance number operating mode. Similar to Reference by name operating
mode, the Valid output is false whenever the actor currently being referenced is not present in
the world.

2 Blocks

2-88

Version History
Introduced in R2022b

R2023a: Communicate Unreal Engine Events
Behavior changed in R2023a

Use the Simulation 3D Actor block event ports to communicate events in the Unreal Engine
simulation 3D environment, including when:

• You click on an actor.
• An actor collides or overlaps with another actor.

See Also
sim3d.World | sim3d.Actor | sim3d.sensors.IdealCamera | sim3d.sensors.MainCamera

 Simulation 3D Actor

2-89

Functions

3

stl2vrml
Convert STL file to virtual world file

Syntax
stl2vrml(source)
stl2vrml(source,destination)
stl2vrml(source,destination,format)

Description
stl2vrml(source) converts an ASCII or binary STL file that you specify with source to a VRML97-
compliant, UTF-8 encoded text file.

The converted VRML file has the same name as the source STL file, except that the extension is .wrl
instead of .stl. The stl2vrml function places the VRML file in the current folder.

Tip You can also use the vrimport function to import STL files. However, to import Physical
Modeling XML files, use the stl2vrml function.

stl2vrml(source,destination) creates the converted VRML file in the destination folder.

stl2vrml(source,destination,format) creates the converted virtual world file in the specified
format.

Examples

Convert STL File to VRML File

This example uses an STL file in the Simscape™ Multibody™ product.

Convert the STL file Bar1_Default_sldprt.STL (in matlab/toolbox/physmod/sm/smdemos/
import/four_bar) to a VRML file and place the resulting file in the current folder.

stl2vrml('Bar1_Default_sldprt.STL')
ls

. .. Bar1_Default_sldprt.wrl
% Other files and folders in the current folder appear.

Convert STL File to X3D File

This example uses an STL file in the Simscape Multibody product.

Convert the STL file Bar1_Default_sldprt.STL (in matlab/toolbox/physmod/sm/smdemos/
import/four_bar) to an XML-encoded virtual world file and place the resulting file in a folder
called virtualworlds.

3 Functions

3-2

stl2vrml('Bar1_Default_sldprt.STL','virtualworlds','x3d')
ls

. .. Bar1_Default_sldprt.x3d
% Other files and folders in the current folder appear, as well.

Input Arguments
source — STL source file path
character vector

STL source file path, specified as a string. The STL file can be either ASCII or binary.

If the source file is a Physical Modeling XML file, stl2vrml converts all STL files referenced in the
XML file. It also creates a main assembly VRML file that contains Inline references to all converted
individual VRML files. Inlines are wrapped by Transform nodes with DEF names corresponding to
the part names defined in their respective STL source files.

destination — Path to folder for converted file
character vector

Path to the destination folder for converted file, specified as a string. If the destination folder does not
exist, the stl2vrml function attempts to create it.

format — File format for converted virtual world file
'wrl' (VRML) (default) | 'x3d' (XML-encoded X3D file) | 'x3dv' (Classic VRML-encoded X3D file)

File format for converted virtual world file, specified as a string.

Tips
• Use the created assembly virtual world files as templates for creating virtual scenes. Edit the

scenes. For example, add lights, viewpoints, or surrounding objects, modify part materials, define
navigation speeds, and so on.

• The stl2vrml function places assembly parts in the global coordinate system. If the source is a
physical modeling XML file, the resulting virtual world assembly file reflects the initial positions of
parts defined in the XML file.

• To use the tree structure of the related SolidWorks® source file in the assembly virtual world file,
avoid spaces in assembly and component names. To process the assembly VRML files (but not X3D
files), you can use the vrphysmod function to obtain a Simulink model with VRML visualization.

Version History
Introduced in R2010b

See Also
vrimport | vrcadcleanup | vrphysmod

Topics
“Import STL and Physical Modeling XML Files”
“Link to Simulink and Simscape Multibody Models”

 stl2vrml

3-3

vrcadcleanup
Clean up virtual world 3D file exported from CAD tools

Syntax
vrcadcleanup('filename')
vrcadcleanup('filename', 'hint')

Description
vrcadcleanup('filename') copies the specified file to a backup file with the extension bak. It
then modifies the virtual world 3D file exported from Pro/ENGINEER™ or SolidWorks. This cleanup
enables the Simulink 3D Animation software to use these files.

vrcadcleanup performs the following modifications to VRML files:

• Removal of everything except inlines, viewpoints, and transforms
• Provision of names for inline transforms

Note You can use vrcadcleanup with VRML files (.wrl), but not with X3D files (.x3d or .x3dv).

vrcadcleanup('filename', 'hint') takes in account the value of 'hint' during conversion.
Possible value of 'hint' includes:

Argument Description
'solidworks' Assumes that the software is exporting the original set of virtual world

3D files from SolidWorks. This option adds or increments the numerical
suffix to the node names to match the part names that exist in the
corresponding physical modeling XML file.

This function expects the input file structure to correspond to the typical output of the specified CAD
tools. The typical input file should contain:

• A structure of viewpoints and inline nodes (possibly contained in one layer of transform nodes)
• One inline node for each part of the exported assembly

The function also performs the following:

• Upon output, discards any additional nodes, including transform nodes, that do not contain inline
nodes.

• Processes hierarchically organized assemblies, where inline files instead of part geometries
contain additional groups of nested node inline nodes. In such subassembly files, copies all inline
references to the main virtual world 3D file. The function wraps these inline references with a
Transform node, using a name that corresponds to the subassembly name.

Note If you call this function for a file that is not a product of a CAD export filter, the output file
might be corrupted.

3 Functions

3-4

Examples
To clean up the VRML file four_link.wrl:

vrcadcleanup('four_link.wrl');

Version History
Introduced in R2009a

See Also
stl2vrml | vrphysmod | “Import STL and Physical Modeling XML Files” | “Link to Simulink and
Simscape Multibody Models”

 vrcadcleanup

3-5

vr.canvas class

Create virtual reality canvas

Description
Create a virtual reality canvas.

Construction
virtualCanvas = vr.canvas(world) creates a virtual reality canvas showing the specified
virtual world.

virtualCanvas = vrfigure(world,parent) creates a virtual reality canvas in the specified
parent figure or panel. A panel arranges user interface components into groups. By visually grouping
related controls, panels can make the user interface easier to understand. A panel can have a title
and various borders.

virtualCanvas = vr.canvas(world,parent,position) creates a virtual reality canvas in a
figure or panel at the specified position.

virtualCanvas = vr.canvas(world,PropertyName,Value,...,PropertyName,Value) sets
the values of the vr.canvas properties specified by one or more PropertyName,Value pair
arguments.

Input Arguments

world — Virtual world
vrworld object

Virtual world, specified as a vrworld object.

Note Open the virtual world before you create a vr.canvas object using that virtual world.

parent — Figure for displaying canvas
figure object | uipanel object

Figure for displaying the canvas, specified as a MATLAB figure or uipanel object

position — Canvas location and size
vector with four elements

Location and size of virtual canvas, specified as the vector, in the form [left bottom width
height]. Specify measurements in pixels.

Note On Windows systems, figure windows cannot be less than 104 pixels wide, regardless of the
value of the position argument.

3 Functions

3-6

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the canvas. This value can be negative on systems that
have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the canvas. This value can be negative on systems
that have more than one monitor.

width Distance between the right and left inner edges of the canvas.
height Distance between the top and bottom inner edges of the canvas.

Example: [230 250 570 510]
Data Types: double

PropertyName-Value Pair Arguments

Specify optional comma-separated pairs of PropertyName,Value arguments. PropertyName is the
argument name and Value is the corresponding value. PropertyName must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
PropertyName1,Value1,...,PropertyNameN,ValueN.
Example: set(myFigure,'Antialiasing','on','CameraPosition',[0 100 100])

Antialiasing — Smooth textures using antialiasing
'off' (default) | 'on'

Smooth textures using antialiasing, specified as 'on' or 'off'. Antialiasing smooths textures by
interpolating values between texture points.

CameraBound — Camera movement with current viewpoint
'on' (default) | 'off'

Camera movement with the current viewpoint, specified as 'on' or 'off'.

CameraDirection — Camera direction in the current viewpoint local coordinates
vector of three doubles

Camera direction in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in current viewpoint local coordinates.

CameraPosition — Camera position in the current viewpoint local coordinates
vector of three doubles

Camera position in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in the current viewpoint local coordinates.

CameraUpVector — Camera up vector
vector of three doubles

Camera up vector, specified as a vector of three doubles. The doubles represent the x, y, and z vectors
in the current viewpoint local coordinates.

DeleteFcn — Callback invoked when closing vr.canvas object
string

 vr.canvas class

3-7

Callback invoked when closing the vr.canvas object, specified as a string.

ExaminePivotPoint — Pivot point about which camera rotates in examine navigation mode
vector of three doubles

Pivot point about which camera rotates in examine navigation mode, specified as a vector of three
doubles in world coordinates.

Headlight — Headlight from camera
'on' (default) | 'off'

Headlight from camera, specified as 'on' or 'off'. If you specify 'off', the camera does not emit
light and the scene can appear dark.

Lighting — Lighting effect
'on' (default) | 'off'

Lighting effect, specified as 'on' or 'off'. If you specify 'off', the camera does not emit light and
the scene can appear dark.

MaxTextureSize — Maximum pixel size of textures
'auto' (default) | integer in a power of 2

Maximum pixel size of textures, specified as 'auto' or integer in a power of 2. The value of 'auto'
sets the maximum texture pixel size. Otherwise, specify an integer in a power of two that is equal to
or less than the video card limit (typically 1024 or 2048).

The smaller the size, the faster the texture renders. Increasing the size improves image quality but
decreases performance.

Note Specifying a value that is unsuitable causes a warning. The Simulink 3D Animation software
then adjusts the property to the next smaller suitable value.

Data Types: int32

NavMode — Navigation mode
'fly' (default) | 'examine' | 'walk' | 'none'

Navigation mode, specified as 'fly', 'examine', 'walk', or 'none'. See “Mouse Navigation”.

NavPanel — Navigation panel appearance
'none' (default) | 'halfbar' | 'bar' | 'opaque' | 'translucent'

Navigation panel appearance, specified as one of 'none', 'halfbar', 'bar', 'opaque', or
'translucent'.

Navspeed — Navigation speed
'normal' (default) | 'slow' | 'veryslow' | 'fast' | 'veryfast'

Navigation speed, specified as 'normal', 'slow', 'veryslow', 'fast', or 'veryfast'.

NavZones — Display navigation zones
'off' (default) | 'on'

3 Functions

3-8

Navigation zones display, specified as 'on' or 'off'.

Position — Canvas location and size
vector with four doubles

Location and size of virtual canvas, specified as the vector in the form [left bottom width
height]. Specify measurements in pixels or normalized, based on the Units property setting.

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the canvas. You can specify a negative value on systems
that have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the canvas. You can specify a negative value on
systems that have more than one monitor.

width Distance between the right and left inner edges of the canvas.
height Distance between the top and bottom inner edges of the canvas.

Example: [230 250 570 510]

Sound — Sound effects
'on' (default) | 'off'

Sound effects, specified as 'on' or 'off'.

Stereo3D — Stereoscopic vision mode
'off' (default) | 'anaglyph' | 'active' | vr.utils.stereo3d object

Stereoscopic vision mode, specified as 'off', 'anaglyph', 'active' or a vr.utils.stereo3d
object.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCameraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.
Data Types: int32

Stereo3DCameraOffset — Distance of left and right camera for stereoscopic vision
non-negative floating-point double-precision number

Distance of left and right camera from parallax for stereoscopic vision, specified as a non-negative
floating-point double-precision number.

Specifying a vr.utils.stereo3d object for the Stereo3D property also sets the
Stereo3DCameraOffset and Stereo3DHIT properties and sets color filters for the left and right
cameras.

Stereo3DHIT — Horizontal image translation (HIT) of two stereoscopic images
double from 0 to 1

Horizontal image translation (HIT) of two stereoscopic images, specified as a double from 0 through
1, inclusive. The larger the value, the further back the background appears.

 vr.canvas class

3-9

Specifying a vr.utils.stereo3d object for the Stereo3D property also sets the
Stereo3DCameraOffset and Stereo3DHIT properties and sets color filters for the left and right
cameras.

Textures — Texture use
'on' (default) | 'off'

Texture use, specified as 'on' or 'off'.

Tooltips — Tooltips display
'on' (default) | 'off'

Tooltips display, specified as 'on' or 'off'.

Transparency — Transparency effect
'on' (default) | 'off'

Transparency effect, specified as 'on' or 'off'.

Triad — Triad location
'bottomleft' (default) | 'bottomright' | 'center | 'topleft' | 'topright' | 'none'

Triad location, specified 'bottomleft', 'bottomright', 'center, 'topleft', 'topright', or
'none'.

Units — Units for Position property
'pixels' (default) | 'normalized'

Units for Position property, specified as 'pixels' or 'normalized'.

Viewpoint — Active viewpoint of figure
string

Active viewpoint of a figure, specified as a string. If the active viewpoint has no description, use an
empty string.

Wireframe — Wireframe display
'off' (default) | 'on'

Wireframe display, specified as 'on' or 'off'.

ZoomFactor — Camera zoom factor
1 (default) | floating-point number

Camera zoom factor, specified as a floating-point number. A zoom factor of 2 makes the scene look
twice as large. A zoom factor of 0.1 makes it look 10 times smaller, and so forth.

Output Arguments

virtualCanvas — Virtual reality canvas
vr.canvas object

Virtual reality canvas, represented by a vr.canvas object

3 Functions

3-10

Properties
Antialiasing — Smooth textures using antialiasing
'off' (default) | 'on'

Smooth textures using antialiasing, returned as 'on' or 'off'. Antialiasing smooths textures by
interpolating values between texture points.

CameraBound — Camera movement with current viewpoint
'on' (default) | 'off'

Camera movement with the current viewpoint, returned as 'on' or 'off'.

CameraDirection — Camera direction in the current viewpoint local coordinates
vector of three doubles

Camera direction in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in current viewpoint local coordinates.

CameraDirectionAbs — Camera direction in world coordinates
vector of three doubles

Camera direction in world coordinates, returned as a vector of three doubles (read-only property).

CameraPosition — Current camera position in the current viewpoint local coordinates
vector of three doubles

Camera position in the current viewpoint local coordinates, returned as a vector of three doubles. The
doubles represent the x, y, and z vectors in the current viewpoint local coordinates.

CameraPositionAbs — Camera position in world coordinates
vector of three doubles

Camera direction in world coordinates, represented by a vector of three doubles (read-only property).

CameraUpVector — Camera up vector
vector of three doubles

Camera up vector, returned as a vector of three doubles. The doubles represent the x, y, and z vectors
in the current viewpoint local coordinates.

CameraUpVectorAbs — Camera up vector in world coordinates
vector of three doubles

Camera up vector in world coordinates, represented by a vector of three doubles (read-only
property).

DeleteFcn — Callback invoked when closing vr.canvas object
string

Callback invoked when closing the vr.canvas object, returned as a string.

ExaminePivotPoint — Pivot point about which camera rotates in examine navigation mode
vector of three doubles

 vr.canvas class

3-11

Pivot point about which camera rotates in examine navigation mode, returned as a vector of three
doubles in world coordinates.

Headlight — Headlight from camera
'on' (default) | 'off'

Headlight from camera, returned as 'on' or 'off'. If set to 'off', the camera does not emit light
and the scene can appear dark.

Lighting — Lighting effect
'on' (default) | 'off'

Lighting effect, returned as 'on' or 'off'. If set to 'off', the camera does not emit light and the
scene can appear dark.

MaxTextureSize — Maximum pixel size of textures
'auto' (default) | integer in a power of 2

Maximum pixel size of a texture used. The smaller the size, the faster the texture can render. A value
of 'auto' means the texture is set to the maximum pixel size.
Data Types: int32

NavMode — Navigation mode
'fly' (default) | 'examine' | 'walk' | 'none'

Navigation mode, returned as 'fly', 'examine', 'walk', or 'none'. See “Mouse Navigation”.

NavPanel — Navigation panel appearance
'none' (default) | 'halfbar' | 'bar' | 'opaque' | 'translucent'

Navigation panel appearance, returned as 'none', 'halfbar', 'bar', 'opaque', or
'translucent'.

Navspeed — Navigation speed
'normal' (default) | 'slow' | 'veryslow' | 'fast' | 'veryfast'

Navigation speed, returned as 'normal', 'slow', 'veryslow', 'fast', or 'veryfast'.

NavZones — Display navigation zones
'off' (default) | 'on'

Navigation zones display, returned as 'on' or 'off'.

Parent — Handle of parent of virtual reality canvas object
double

Handle of parent of virtual reality canvas object, represented by a double (read-only property).

Position — Canvas location and size
vector with four doubles

Location and size of virtual canvas, returned as the vector in the form [left bottom width
height]. Specify measurements in pixels or normalized, based on the Units property setting.

3 Functions

3-12

Note On Windows systems, figure windows cannot be less than 104 pixels wide, regardless of the
value of the Position property.

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the canvas. You can specify a negative value on systems
that have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the canvas. You can specify a negative value on
systems that have more than one monitor.

width Distance between the right and left inner edges of the canvas.
height Distance between the top and bottom inner edges of the canvas.

Example: [230 250 570 510]

Sound — Sound effects
'on' (default) | 'off'

Sound effects, returned as 'on' or 'off'.

Stereo3D — Stereoscopic vision mode
'off' (default) | 'anaglyph' | 'active' | vr.utils.stereo3d object

Stereoscopic vision mode, returned as 'off', 'anaglyph', 'active' or a vr.utils.stereo3d
object.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCameraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.

Stereo3DCameraOffset — Distance of left and right camera for stereoscopic vision
non-negative floating-point double-precision number

Distance of left and right camera from parallax for stereoscopic vision, specified as a non-negative
floating-point double-precision number.

Specifying a vr.utils.stereo3d object for the Stereo3D property also sets the
Stereo3DCameraOffset and Stereo3DHIT properties and sets color filters for the left and right
cameras.

Stereo3DHIT — Horizontal image translation (HIT) of two stereoscopic images
double from 0 to 1

Horizontal image translation (HIT) of two stereoscopic images, returned as a double from 0 through
1, inclusive. The larger the value, the further back the background appears. By default, the
background image is at zero and the foreground image appears to pop out from the monitor toward
the person viewing the virtual world.

Specifying a vr.utils.stereo3d object for the Stereo3D property also sets the
Stereo3DCameraOffset and Stereo3DHIT properties and sets color filters for the left and right
cameras.

 vr.canvas class

3-13

Textures — Texture use
'on' (default) | 'off'

Texture use, returned as 'on' or 'off'.

Tooltips — Tooltips display
'on' (default) | 'off'

Tooltips display, returned as 'on' or 'off'.

Transparency — Transparency effect
'on' (default) | 'off'

Transparency effect, returned as 'on' or 'off'.

Triad — Triad location
'bottomleft' (default) | 'bottomright' | 'center | 'topleft' | 'topright' | 'none'

Triad location, returned as 'bottomleft', 'bottomright', 'center, 'topleft', 'topright',
or 'none'.

Units — Units for Position property
'pixels' (default) | 'normalized'

Units for Position property, returned as 'pixels' or 'normalized'.

Viewpoint — Active viewpoint of figure
string

Active viewpoint of a figure, returned as a string.

Wireframe — Wireframe display
'off' (default) | 'on'

Wireframe display, returned as 'on' or 'off'.

World — World containing canvas
vrworld object

World containing canvas, represented by a vrworld object (read-only property).

ZoomFactor — Camera zoom factor
1 (default) | floating-point number

Camera zoom factor, returned as a floating-point number. A zoom factor of 2 makes the scene look
twice as large. A zoom factor of 0.1 makes it look 10 times smaller, and so forth.

Methods

capture Capture virtual reality canvas image

Examples

3 Functions

3-14

Create a Canvas That Displays in a Figure

Create and open a vrworld object.

myWorld = vrworld('vrlights');
open(myWorld);

Create a figure to use as the parent of the canvas. Create a canvas. Use a figure as the parent and
specify the position.

fig = figure;
myCanvas = vr.canvas(myWorld,'Parent',fig,'Units',...
'normalized','Position',[0 0 1 1]);

Create a Virtual World in a Canvas

Create a figure. Create a canvas in the figure and specify a title.

 vr.canvas class

3-15

pf = figure;
pp1 = uipanel('Parent',pf,'Title','Panel with Title');

Create and open a virtual world.

w = vrworld('vrlights');
open(w);

Create a canvas in the virtual world.

c = vr.canvas(w,pp1);

3 Functions

3-16

Set Property Values of Canvas

Set the camera direction, navigation mode, and stereoscopic vision properties of a canvas.

Create and open a vrworld object.

vrmountWorld = vrworld('vrmount.x3d');
open(vrmountWorld);

Create a vr.utils.stereo3d object to use to specify stereoscopic vision properties.

myStereo3D = vr.utils.stereo3d.ANAGLYPH_RED_CYAN;

Create a canvas. Define non-default values for some properties.

myCanvas = vr.canvas(vrmountWorld,'Antialiasing','on',...
 'NavPanel','opaque','NavZones','on','Stereo3D',...
 myStereo3D,'Stereo3DCameraOffset',0.25,...
 'Stereo3DHIT',0.02)

myCanvas =

 vr.canvas class

3-17

 canvas with properties:

 Antialiasing: 'on'
 CameraBound: 'on'
 CameraDirection: [0 0 -1]
 CameraPosition: [0 0 0]
 CameraUpVector: [0 1 0]
 ExaminePivotPoint: [0 0 0]
 Headlight: 'on'
 Highlighting: 'on'
 Lighting: 'on'
 MaxTextureSize: 'auto'
 NavPanel: 'opaque'
 NavMode: 'examine'
 NavSpeed: 'normal'
 NavZones: 'on'
 Position: [0 0 1 1]
 Rendering: 'on'
 Sound: 'on'
 Stereo3D: 'anaglyph'
 Stereo3DCameraOffset: 0.2500
 Stereo3DHIT: 0.0200
 Textures: 'on'
 Tooltips: 'off'
 Transparency: 'on'
 Triad: 'none'
 Units: 'normalized'
 Viewpoint: 'View 1 - Observer'
 Wireframe: 'off'
 ZoomFactor: 1
 DeleteFcn: []
 CameraDirectionAbs: [0 -0.1987 -0.9801]
 CameraPositionAbs: [20 8 50]
 CameraUpVectorAbs: [0 0.9801 -0.1987]
 Parent: [1×1 Figure]
 World: [1×1 vrworld]

3 Functions

3-18

Version History
Introduced before R2006a

See Also
vr.utils.stereo3d | vrfigure | vrworld | figure

Topics
“Create vrworld Object for a Virtual World”
“Interact with Virtual Reality Worlds”
“View a Virtual World in Stereoscopic Vision”

 vr.canvas class

3-19

capture
Class: vr.canvas

Capture virtual reality canvas image

Syntax
image_capture = capture(canvas)

Description
image_capture = capture(canvas) captures a virtual reality canvas into a TrueColor RGB
image. You can display this image using the image command.

Input Arguments
canvas — Virtual reality canvas
vr.canvas object

Virtual reality canvas, specified as a vr.canvas object.

Output Arguments
image_capture — Virtual reality canvas image
array

Virtual reality canvas image, captured as an array. The array is an m-by-n-by-3 data array that defines
red, green, and blue color components for each individual pixel.

Examples

Capture an RGB Image of a Figure in a Canvas

Create and open a vrworld object and associate it with the virtual world vrlights.x3d.

lights_world = vrworld('vrlights');
open(lights_world);

Create a vr.canvas object for lights_world.

f = figure;
c = vr.canvas(lights_world, f, [30 30 300 200]);

3 Functions

3-20

vrdrawnow;

Capture an image of the canvas.

image_capture = capture(c);

Display an RGB image of the canvas in a MATLAB® figure window.

figure;
image(image_capture);

 capture

3-21

Version History
Introduced before R2006a

See Also
vrworld | image

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World”

3 Functions

3-22

vrclear
Remove all closed virtual worlds from memory

Syntax
vrclear

vrclear('-force')

Description
The vrclear function removes from memory all virtual worlds that are closed and invalidates all
vrworld objects related to them. This function does not affect open virtual worlds. Open virtual
worlds include those loaded from the Simulink interface. You use this command to

• Ensure that the maximum amount of memory is freed before a memory-consuming operation takes
place.

• Perform a general cleanup of memory.

The vrclear('-force') command removes all virtual worlds from memory, including worlds
opened from the Simulink interface.

Version History
Introduced before R2006a

See Also
vrworld | vrworld/delete | “Close and Delete a vrworld Object”

 vrclear

3-23

vrclose
Close virtual reality figure windows

Syntax
vrclose
vrclose all

Description
vrclose and vrclose all close all the open virtual reality figures.

Examples
Open a series of virtual reality figure windows by typing

vrpend
vrbounce
vrlights

Arrange the viewer windows so they are all visible. Type

vrclose

All the virtual reality figure windows disappear from the screen.

Version History
Introduced before R2006a

See Also
close | “Close and Delete a vrworld Object”

3 Functions

3-24

vrcoordm2vr
Convert MATLAB coordinates to VR coordinates

Syntax
vr = vrcoordm2vr(m)

Description
vr = vrcoordm2vr(m) converts a point with coordinates in the MATLAB coordinate system to the
Virtual World coordinate system.

Examples

Translate an object along a path

This example is a variation of the “Car in the Mountains” example, with the coordinates for
translation specified in MATLAB coordinate system.

Create a vrworld object representing the virtual world and open it.

world = vrworld('vrmount');
open(world);
view(world);

Identify the nodes in the virtual world using the nodes command

nodes(world)

View1 (Viewpoint) [VR Car in the Mountains]
 Camera_car (Transform) [VR Car in the Mountains]
 VPfollow (Viewpoint) [VR Car in the Mountains]
 Automobile (Transform) [VR Car in the Mountains]
 Wheel (Shape) [VR Car in the Mountains]
 Tree1 (Group) [VR Car in the Mountains]
 Wood (Group) [VR Car in the Mountains]
 Canal (Shape) [VR Car in the Mountains]
 ElevApp (Appearance) [VR Car in the Mountains]
 River (Shape) [VR Car in the Mountains]
 Bridge (Shape) [VR Car in the Mountains]
 Road (Shape) [VR Car in the Mountains]
 Tunnel (Transform) [VR Car in the Mountains]

Access the Automobile vrnode object by assigning it to a handle

car = world.Automobile

car =

 vrnode object: 1-by-1

 Automobile (Transform) [VR Car in the Mountains]

 vrcoordm2vr

3-25

Move the car along the first section of the road.

xz_my = zeros(12,3);

xz_my(:,2) = 1:12;
xz_my(:,1) = 3;
xz_my(:,3) = -0.25;

for idx = 1:length(xz_my)
 car.translation = vrcoordm2vr(xz_my(idx,:));
 vrdrawnow;
 pause(0.1);
end

Rotate the car a little to get to the second part of the road. This is done by setting the rotation
property of the Automobile node.

car.rotation = [0 1 0 -0.7];
vrdrawnow;

Move the car through the second section of the road

z2 = 12:26;
x2 = 3:1.4285:23;
y2 = -0.25 + zeros(size(z2));
xz_my2 = [x2' z2' y2'];

for idx = 1:length(xz_my2)
 car.translation = vrcoordm2vr(xz_my2(idx,:));
 vrdrawnow;
 pause(0.1);
end

Rotate the car once again to face the third stretch of the road and continue to the end.

car.rotation = [0 1 0 0];
x3 = 23:43;
z3 = 26 + zeros(size(x3));
y3 = -0.25 + zeros(size(z3));
xz_my3 = [x3' z3' y3'];
for idx = 1:length(xz_my3)
 car.translation = vrcoordm2vr(xz_my3(idx,:));
 vrdrawnow;
 pause(0.1);
end

Input Arguments
m — Coordinates in MATLAB notation
3-element vector

Coordinates of a point in MATLAB notation, specified as a 3-element row vector.
Data Types: single | double

3 Functions

3-26

Output Arguments
vr — Coordinates in VRML notation
3-element vector

Coordinates of a point in VRML notation, returned as a 3-element row vector.
Data Types: single | double

Version History
Introduced in R2019a

See Also
vrcoordvr2m | MATLAB to VR Coordinates | VR to MATLAB Coordinates | VR Rotation to Rotation
Matrix | Rotation Matrix to VR Rotation | vrrotmat2vec | vrrotvec2mat

Topics
“Virtual World Coordinate System”

 vrcoordm2vr

3-27

vrcoordvr2m
Convert VR coordinates to MATLAB coordinates

Syntax
m = vrcoordvr2m(vr)

Description
m = vrcoordvr2m(vr) converts a point with coordinates in the Virtual World coordinate system to
the MATLAB coordinate system.

Examples

Take-off Trajectory

This example creates a simple plane take-off trajectory in the virtual reality coordinate system. and
plots it in MATLAB using plot3

The plane starts in the +x direction and goes up (positive values of y coordinate) in the z=0 plane. We
then convert the trajectory to MATLAB coordinates, so that it can be displayed in a 3D figure using
the MATLAB plot3 command.

Define a simple take-off trajectory

vrpath = [0 0 0; 1 0 0; 2 0.2 0; 3 0.5 0; 4 1 0];

Convert the path from virtual reality coordinates to MATLAB coordinates

mpath = vrcoordvr2m(vrpath);

Display the path in a 3D plot using the plot3 command

plot3 (mpath(:,1), mpath(:,2), mpath(:,3))

Input Arguments
vr — Coordinates in VRML notation
3-element vector

Coordinates of a point in VRML notation, specified as a 3-element row vector.
Data Types: double

Output Arguments
m — Coordinates in MATLAB notation
3-element vector

Coordinates of a point in MATLAB notation, returned as a 3 element row vector.

3 Functions

3-28

Version History
Introduced in R2019a

See Also
vrcoordm2vr | MATLAB to VR Coordinates | VR to MATLAB Coordinates | VR Rotation to Rotation
Matrix | Rotation Matrix to VR Rotation | vrrotmat2vec | vrrotvec2mat

Topics
“Virtual World Coordinate System”

 vrcoordvr2m

3-29

vrdir2ori
Convert viewpoint direction to orientation

Syntax
vrdir2ori(d)
vrdir2ori(d,options)

Description
vrdir2ori(d) converts the viewpoint direction, specified by a vector of three elements, to an
appropriate orientation (virtual world rotation vector).

vrdir2ori(d,options) converts the viewpoint direction with the default algorithm parameters
replaced by values defined in options.

The options structure contains the parameter epsilon that represents the value below which a
number will be treated as zero (default value is 1e-12).

Version History
Introduced in R2007b

See Also
vrori2dir on page 3-108 | vrrotmat2vec on page 3-120 | vrrotvec | vrrotvec2mat on page 3-
121

3 Functions

3-30

vrdrawnow
Update virtual world

Syntax
vrdrawnow

Description
vrdrawnow removes from the queue pending changes to the virtual world and makes these changes
to the scene in the viewer.

Changes to the scene are normally queued and the views are updated when

• The MATLAB software is idle for some time (no Simulink model is running and no script is being
executed).

• A Simulink step is finished.

Version History
Introduced before R2006a

See Also
vrworld/edit | vrworld/open | “Open a Virtual World with MATLAB” | “Interact with a Virtual
World with MATLAB”

 vrdrawnow

3-31

vredit
Open 3D World Editor

Syntax
w = vredit
w = vredit(filename)

Description
w = vredit opens the 3D World Editor with an empty virtual world.

w = vredit(filename) opens a virtual world file in the 3D World Editor, based on the specified
filename. It returns the vrworld handle of the virtual world.

To open a virtual world file in a third-party editor, do not use the vredit command. For example, to
open a virtual world in the Ligos® V-Realm Builder editor:

1 Set the default editor to V-Realm Builder. In MATLAB, enter:

vrsetpref('Editor','*VREALM');

2 To open a file in the V-Realm editor, in MATLAB navigate to a virtual world file, right-click, and
select Edit.

Note The vredit command opens the 3D World Editor, regardless of the default editor
preference setting.

Examples

Open New Virtual World in 3D World Editor

vredit

Open Existing Virtual World in 3D World Editor

Open the membrane virtual world in the 3D World Editor.

myworld = vredit('membrane.wrl')

Version History
Introduced in R2012b

3 Functions

3-32

See Also
vrworld/edit | vrworld/open | “Open a Virtual World with MATLAB” | “Interact with a Virtual
World with MATLAB”

 vredit

3-33

vrfigure class

Create virtual reality figure

Description
Creates a virtual reality figure.

To access vrfigure properties, use the vrfigure/get method. To change properties, use the
vrfigure/set method.

If you create a vrfigure object by specifying a virtual world, the virtual figure displays in the viewer
specified in the vrsetpref DefaultViewer property.

Construction
virtual_figure = vrfigure(world) creates a virtual reality figure showing the specified virtual
world.

virtual_figure = vrfigure(world,position) creates a virtual reality figure at the specified
position.

virtual_figure = vrfigure([]) returns an empty vrfigure object that does not have a visual
representation.

virtual_figure = vrfigure returns an empty vector of type vrfigure.

Input Arguments

world — Virtual world
vrworld object

Virtual world, specified as a vrworld object.

Note Open the virtual world that you specify before you create a vrfigure object using that virtual
world.

Position — Figure location and size
vector with four elements

Location and size of virtual figure, specified as the vector in the form [left bottom width
height]. Specify measurements in pixels.

Note On Windows systems, figure windows cannot be less than 104 pixels wide, regardless of the
value of the Position property.

3 Functions

3-34

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the figure window. This value can be negative on systems
that have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the figure window. This value can be negative on
systems that have more than one monitor.

width Distance between the right and left inner edges of the figure.
height Distance between the top and bottom inner edges of the figure.

Example: [230 250 570 510]
Data Types: double

Output Arguments

virtual_figure — Virtual reality figure
vrfigure object | empty vector of type vrfigure

If you use a vrworld object as an input argument, virtual_figure is a virtual reality figure,
represented by a vrfigure object.

If you use an empty array as an input argument, the vrfigure constructor returns a vector of type
vrfigure.

If you do not use an input argument, the vrfigure constructor returns an empty vector of type
vrfigure.

Methods

capture Capture virtual reality figure image
capture Capture virtual reality figure image
close Close virtual reality figure
get Return property value of vrfigure object
isvalid Check validity of vrfigure object handles
set Set property values of vrfigure object
set Set property values of vrfigure object

Examples

Create and Display a vrworld Object

Create a vrworld object that is associated with the virtual world vrmount.wrl. Open and view the
virtual world.

myworld = vrworld('vrmount');
open(myworld);
f = vrfigure(myworld);

 vrfigure class

3-35

Version History
Introduced before R2006a

See Also
vr.utils.stereo3d | vr.canvas

Topics
“Create vrworld Object for a Virtual World”
“Interact with Virtual Reality Worlds”
“View a Virtual World in Stereoscopic Vision”

3 Functions

3-36

capture
Class: vrfigure

Capture virtual reality figure image

Syntax
image_capture = capture(figure)

Description
image_capture = capture(figure) captures a virtual reality figure into a TrueColor RGB image.
You can display this image using the image command. You can then print the figure.

Input Arguments
figure — Virtual reality figure
vrfigure object

Virtual reality figure, specified as a vrfigure object.

Output Arguments
image_capture — Virtual reality figure image
array

Virtual reality figure image, captured as an array. The array is an m-by-n-by-3 data array that defines
red, green, and blue color components for each individual pixel.

Examples

Capture an RGB Image of a Figure

Create and open a vrworld object and associate it with the virtual world vrmount.x3d.

myworld = vrworld('vrmount');
open(myworld);

View the virtual world in the Simulink® 3D Animation™ Viewer.

f = vrfigure(myworld);

 capture

3-37

Create an RGB image of the figure.

image_capture = capture(f);

Display the RGB figure image in a MATLAB® figure window.

image(image_capture);

3 Functions

3-38

Version History
Introduced before R2006a

See Also
vrfigure | vrworld | image | isvalid | vrnode/isvalid

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World”

 capture

3-39

close
Class: vrfigure

Close virtual reality figure

Syntax
close(figure)

Description
close(figure) closes the virtual reality figure referenced by figure. If figure is a vector of
vrfigure object handles, then the method closes multiple figures.

Input Arguments
figure — Virtual reality figure
vrfigure object

Virtual reality figure, specified as a vrfigure object.

Examples

Create a Figure

myworld = vrworld('vrpend');
open(myworld);
f = vrfigure(myworld);
close(f)

Version History
Introduced before R2006a

See Also
vrfigure | vrworld

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World”

3 Functions

3-40

get
Class: vrfigure

Return property value of vrfigure object

Syntax
get(figure)
figureProp = get(figure,propertyName)

Description
get(figure) lists the values of all the properties of the vrfigure object.

figureProp = get(figure,propertyName) returns the value of the specified property of the
vrfigure object.

Input Arguments
figure — Virtual reality figure
vrfigure object

Virtual reality figure, specified as a vrfigure object.

property_name — Virtual reality figure object property
string

Virtual reality figure property, specified as one of these.

vrfigure Property Meaning
Antialiasing Smooth textures using antialiasing, which

interpolates values between texture points.
CameraBound Camera movement with the current viewpoint.
CameraDirection Camera direction in the current viewpoint local

coordinates.
CameraDirectionAbs Camera direction in the world coordinates. (read-

only property).
CameraPosition Camera position in the current viewpoint local

coordinates.
CameraPositionAbs Camera position in world coordinates (read-only

property).
CameraUpVector Camera up vector.
CameraUpVectorAbs Camera up vector in world coordinates (read-only

property).
CaptureFileFormat File format for a captured frame file.

 get

3-41

vrfigure Property Meaning
CaptureFileName Frame capture file name.
DeleteFcn Callback invoked when closing the vrfigure

object.
ExaminePivotPoint Pivot point about which camera is rotated in

examine navigation mode, in world coordinates.
Fullscreen Full screen display of figure.
Headlight Headlight from camera.
Lighting Lighting effect.
MaxTextureSize Maximum pixel size of a texture used. The

smaller the size, the faster the texture can
render. A value of 'auto' means the texture is
set to the maximum pixel size.

Name Name of figure.
NavMode Navigation mode. See “Mouse Navigation”.
NavPanel Navigation panel appearance.
NavSpeed Navigation speed.
NavZones Navigation zones display.
Position Screen coordinates of figure.
Record2D 2-D offline animation file recording.
Record2DCompress
Method

Compression method for creating 2-D animation
files. See profile in the MATLAB VideoWriter
documentation.

Record2DCompress
Quality

Quality of 2-D animation file compression. See
the MATLAB VideoWriter documentation.

Record2DFileName Name of 2-D offline animation file. The string can
contain tokens that animation recording replaces
with information. See “File Name Tokens”.

Record2DFPS Rate of playback for the 2-D offline animation
video in frames per second (fps).

Rendering Specifies whether to render a vrfigure object.
Turning off rendering improves performance. For
example, if your code does batch operations on a
virtual figure, you can turn off rendering during
that processing and then turn it back on after the
processing.

Sound Sound effects.
StatusBar Status bar display.
Stereo3D Stereoscopic vision mode.
Stereo3DCameraOffset Distance in virtual world units of left and right

camera from parallax for stereoscopic vision.
Parallax is the difference in the apparent position
of an object viewed from two cameras.

3 Functions

3-42

vrfigure Property Meaning
Stereo3DHIT Horizontal image translation (HIT) of the two

stereo images in stereoscopic vision, represented
by a value from 0 to 1, inclusive. The larger the
value, the further back the background appears.

Textures Texture use.
ToolBar Toolbar display.
Tooltips Tooltips display in navigation panel.
Transparency Transparency effect.
Triad Location of the triad.
Viewpoint Active viewpoint of figure.
Wireframe Wireframe display.
World Virtual world that the figure displays (read-only

property).
ZoomFactor Camera zoom factor.

Output Arguments
figureProp — Virtual reality figure property
string | vector

Virtual reality figure property, returned as a string or vector.

Examples

Return All Property Values of a Figure

Create a vrfigure object.

myworld = vrworld('vrmount');
open(myworld);
virtual_fig = vrfigure(myworld);

 get

3-43

Return the properties of the virtual figure virtual_fig.

get(virtual_fig)

 Antialiasing = 'on'
 CameraBound = 'on'
 CameraDirection = [0 0 -1]
 CameraDirectionAbs = [0 -0.198669 -0.980067]
 CameraPosition = [0 0 0]
 CameraPositionAbs = [20 8 50]
 CameraUpVector = [0 1 0]
 CameraUpVectorAbs = [0 0.980067 -0.198669]
 CaptureFileFormat = 'tif'
 CaptureFileName = '%f_anim_%n.tif'
 DeleteFcn = ''
 ExaminePivotPoint = [0 0 0]
 Fullscreen = 'off'
 Headlight = 'on'
 Lighting = 'on'
 MaxTextureSize = 'auto'
 Name = 'VR Car in the Mountains'
 NavMode = 'examine'

3 Functions

3-44

 NavPanel = 'halfbar'
 NavSpeed = 'normal'
 NavZones = 'off'
 Position = [5 92 576 350]
 Record2D = 'off'
 Record2DCompressMethod = 'auto'
 Record2DCompressQuality = 75
 Record2DFPS = 'auto'
 Record2DFileName = '%f_anim_%n.avi'
 Rendering = 'on'
 Sound = 'on'
 StatusBar = 'on'
 Stereo3D = 'off'
 Stereo3DCameraOffset = 0.1
 Stereo3DHIT = 0
 Textures = 'on'
 ToolBar = 'on'
 Tooltips = 'on'
 Transparency = 'on'
 Triad = 'none'
 Viewpoint = 'View 1 - Observer'
 Wireframe = 'off'
 World = vrworld object: 1-by-1
 ZoomFactor = 1

Return Name of a Figure

Create a vrfigure object.

myworld = vrworld('vrmount');
open(myworld);
virtual_fig = vrfigure(myworld);

 get

3-45

Return the properties of the virtual figure virtual_fig.

figure_name = get(virtual_fig,'Name')

figure_name =
'VR Car in the Mountains'

Version History
Introduced before R2006a

See Also
vrfigure | vr.utils.stereo3d

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World”
“View a Virtual World in Stereoscopic Vision”

3 Functions

3-46

isvalid
Class: vrfigure

Check validity of vrfigure object handles

Syntax
valid_handles = isvalid(vrfigure_vector)

Description
valid_handles = isvalid(vrfigure_vector) detects whether the vrfigure handles are
valid.

Input Arguments
figure_vector — Virtual reality figure vector
array of vrfigure object handles

Virtual reality figure vector, specified as a vrfigure object.

Output Arguments
valid_handles — Valid vrfigure object handles
logical array

Virtual reality figure image, captured as a logical array. The array that contains a 1 where the
vrfigure handles are valid and returns a 0 where they are not.

Examples

Check Validity of Figure Handles

Check whether the figure handles of the vrfigure object are valid. The first check shows that the
figure handle is valid, but the second check shows that the handle is invalid because the figure is
closed.

myworld = vrview('vrpend');
f = vrfigure(myworld);
firstCheck = isvalid(f)

firstCheck = logical
 1

close(f)

 isvalid

3-47

secondCheck = isvalid(f)

secondCheck = logical
 0

Version History
Introduced before R2006a

See Also
vrfigure | vrworld

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World”

3 Functions

3-48

set
Class: vrfigure

Set property values of vrfigure object

Syntax
set(figure,PropertyName,Value,...,PropertyName,Value)

Description
set(figure,PropertyName,Value,...,PropertyName,Value) sets the values of the
vrfigure properties specified by one or more PropertyName,Value pair arguments.

Input Arguments
figure — Virtual reality figure
vrfigure object

Virtual reality figure, specified as a vrfigure object.

PropertyName-Value Pair Arguments

Specify comma-separated pairs of PropertyName,Value arguments. PropertyName is the
argument name and Value is the corresponding value. PropertyName must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
PropertyName1,Value1,...,PropertyNameN,ValueN.
Example: set(myFigure,'Antialiasing','on','CameraPosition',[0 100 100])

Antialiasing — Smooth textures using antialiasing
'off' (default) | 'on'

Smooth textures using antialiasing, specified as 'on' or 'off'. Antialiasing smooths textures by
interpolating values between texture points.

CameraBound — Camera movement with current viewpoint
'on' (default) | 'off'

Camera movement with the current viewpoint, specified as 'on' or 'off'.

CameraDirection — Camera direction in the current viewpoint local coordinates
vector of three doubles

Camera direction in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in the current viewpoint local coordinates.

CameraPosition — Camera position in the current viewpoint local coordinates
vector of three doubles

 set

3-49

Camera position in the current viewpoint local coordinates, specified as a vector of three doubles.
The doubles represent the x, y, and z vectors in the current viewpoint local coordinates.

CameraUpVector — Camera up vector
vector of three doubles

Camera up vector, specified as a vector of three doubles. The doubles represent the x, y, and z vectors
in the current viewpoint local coordinates.

CaptureFileFormat — File format for captured frame file
'tif' (default) | 'png'

File format for a captured frame file, specified as 'tif' for Tagged Image Format or 'png' for
Portable Network Graphics format.

CaptureFileName — Frame capture file name
'%f_anim_%n.ext' (default) | string

Frame capture file name, specified as a string. The string can contain tokens that the frame capture
replaces with the corresponding information. See “Define File Name Tokens”.

DeleteFcn — Callback invoked when closing vrfigure object
string

Callback invoked when closing the vrfigure object, specified as a string.

Fullscreen — Fullscreen display of figure
'off' (default) | 'on'

Fullscreen display of figure, specified as 'on' or 'off'.

Headlight — Headlight from camera
'on' (default) | 'off'

Headlight from camera, specified as 'on' or 'off'. If you specify 'off', the camera does not emit
light and the scene can appear dark.

Lighting — Lighting effect
'on' (default) | 'off'

Lighting effect, specified as 'on' or 'off'. If you specify 'off', the camera does not emit light and
the scene can appear dark.

MaxTextureSize — Maximum pixel size of textures
'auto' (default) | integer in a power of 2

Maximum pixel size of textures, specified as 'auto' or integer in a power of 2. The value of 'auto'
sets the maximum texture pixel size. Otherwise, specify an integer in a power of two that is equal to
or less than the video card limit (typically 1024 or 2048).

The smaller the size, the faster the texture renders. Increasing the size improves image quality but
decreases performance.

Note Specifying a value that is unsuitable causes a warning. The Simulink 3D Animation software
then adjusts the property to the next smaller suitable value.

3 Functions

3-50

Data Types: int32

Name — Name of figure
string

Name of figure, specified as a string.

NavMode — Navigation mode
'examine' (default) | 'fly' | 'walk' | 'none'

Navigation mode, specified as 'examine', 'fly', 'walk', or 'none'. See “Mouse Navigation”.

NavPanel — Navigation panel appearance
'none' (default) | 'halfbar' | 'bar' | 'opaque' | 'translucent'

Navigation panel appearance, specified as 'none', 'halfbar', 'bar', 'opaque', or
'translucent'.

Navspeed — Navigation speed
'normal' (default) | 'slow' | 'veryslow' | 'fast' | 'veryfast'

Navigation speed, specified as 'normal', 'slow', 'veryslow', 'fast', or 'veryfast'.

NavZones — Navigation zones display
'off' (default) | 'on'

Navigation zones display, specified as 'on' or 'off'.

Position — Figure location and size
vector with four doubles

Location and size of virtual figure, specified as the vector in the form [left bottom width
height]. Specify measurements in pixels.

Element Description
left Distance from the left edge of the primary display to the inner left

edge of the figure window. You can specify a negative value on
systems that have more than one monitor.

bottom Distance from the bottom edge of the primary display to the inner
bottom edge of the figure window. You can specify a negative value
on systems that have more than one monitor.

width Distance between the right and left inner edges of the figure.
height Distance between the top and bottom inner edges of the figure.

All measurements are in units specified in pixels.
Example: [230 250 570 510]
Data Types: double

Record2D — 2-D offline animation file recording
'off' (default) | 'on'

2-D offline animation file recording, specified as 'on' or 'off'.

 set

3-51

Record2DCompressMethod — Compression method for creating 2-D animation files
'auto' (default) | '' | 'lossless' | 'none' | string with name of a compression method

Compression method for creating 2-D animation files, specified as '', 'lossless', 'none', or a
string specifying the name of a compression method. See profile in the MATLAB VideoWriter
documentation.

Record2DCompressQuality — Quality of 2-D animation file compression
75 (default) | floating point number from 0 through 100, inclusive

Quality of 2-D animation file compression, specified as a floating-point number from 0 through 100,
inclusive. See the MATLAB VideoWriter documentation.
Data Types: int32

Record2DFileName — Name of 2-D offline animation file
string

Name of 2-D offline animation file, specified as a string. The string can contain tokens that animation
recording replaces with the corresponding information. See “File Name Tokens”.

Record2DFPS — Playback rate for 2-D offline animation file
'auto' (default) | scalar

Playback rate for 2-D offline animation file, specified as 'auto' or as a scalar. The 'auto' setting
aligns simulation time with actual time and uses an appropriate frame rate.
Data Types: int32

Rendering — Render vrfigure object in Simulink 3D Animation Viewer
'on' (default) | 'off'

Render vrfigure object in the Simulink 3D Animation Viewer, by specifying 'on' or 'off'. Turning
off rendering improves performance. For example, if your code does batch operations on a virtual
figure, you can turn off rendering during that processing and then turn it back on after the
processing.

Sound — Sound effects
'on' (default) | 'off'

Sound effects, specified as 'on' or 'off'.

StatusBar — Status bar display
'on' (default) | 'off'

Status bar display, specified as 'on' or 'off'.

Stereo3D — Stereoscopic vision mode
'off' (default) | 'anaglyph' | 'active' | vr.utils.stereo3d object

Stereoscopic vision mode, specified as 'off', 'anaglyph', 'active' or a vr.utils.stereo3d
object.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCamaraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.

3 Functions

3-52

Stereo3DCameraOffset — Distance of left and right camera for stereoscopic vision
vector of three doubles

Distance of left and right camera from parallax for stereoscopic vision, specified as a vector of three
doubles representing virtual world units or as a vr.utils.stereo3d object.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCamaraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.

Stereo3DHIT — Horizontal image translation (HIT) of two stereoscopic images
double from 0 to 1

Horizontal image translation (HIT) of two stereoscopic images, specified as a double from 0 through
1, inclusive. The larger the value, the further back the background appears. By default, the
background image is at zero and the foreground image appears to pop out from the monitor toward
the person viewing the virtual world.

Specifying a vr.utils.stereo3d object sets the Stereo3D, Stereo3DCamaraOffset, and
Stereo3DHIT properties. Specifying a vr.utils.stereo3d object also sets color filters for the left
and right cameras.

Textures — Texture use
'on' (default) | 'off'

Texture use, specified as 'on' or 'off'.

Toolbar — Toolbar display
'on' (default) | 'off'

Toolbar display, specified as 'on' or 'off'.

Tooltips — Tooltips display
'on' (default) | 'off'

Tooltips display, specified as 'on' or 'off'.

Transparency — Transparency effect
'on' (default) | 'off'

Transparency effect, specified as 'on' or 'off'.

Viewpoint — Active viewpoint of figure
string

Active viewpoint of a figure, specified as a string. If the active viewpoint has no description, use an
empty string.

Wireframe — Wireframe display
'off' (default) | 'on'

Wireframe display, specified as 'on' or 'off'.

ZoomFactor — Camera zoom factor
1 (default) | floating-point number

 set

3-53

Camera zoom factor, specified as a floating-point number. A zoom factor of 2 makes the scene look
twice as large. A zoom factor of 0.1 makes it look 10 times smaller, and so forth.

Examples

Set Property Values of Figure

Set the camera direction, navigation mode, and stereoscopic vision properties of a virtual figure.

Create a vrfigure object.

myworld = vrworld('vrmount.x3d');
open(myworld);
virtual_fig = vrfigure(myworld);

Create a vr.utils.stereo3d object to use to specify stereoscopic vision properties.

myStereo3D = vr.utils.stereo3d.ANAGLYPH_RED_CYAN;

Set the properties for a figure.

3 Functions

3-54

set(virtual_fig,'CameraDirection',[0 1 0],'NavMode','fly',...
 'Stereo3D',myStereo3D);

View the figure properties.

get(virtual_fig)

 Antialiasing = 'on'
 CameraBound = 'on'
 CameraDirection = [0 1 0]
 CameraDirectionAbs = [0 0.980067 -0.198669]
 CameraPosition = [0 0 0]
 CameraPositionAbs = [20 8 50]
 CameraUpVector = [0 1 0]
 CameraUpVectorAbs = [0 0.980067 -0.198669]
 CaptureFileFormat = 'tif'
 CaptureFileName = '%f_anim_%n.tif'
 DeleteFcn = ''
 ExaminePivotPoint = [0 0 0]
 Fullscreen = 'off'
 Headlight = 'on'
 Lighting = 'on'

 set

3-55

 MaxTextureSize = 'auto'
 Name = 'VR Car in the Mountains'
 NavMode = 'fly'
 NavPanel = 'halfbar'
 NavSpeed = 'normal'
 NavZones = 'off'
 Position = [5 92 576 350]
 Record2D = 'off'
 Record2DCompressMethod = 'auto'
 Record2DCompressQuality = 75
 Record2DFPS = 'auto'
 Record2DFileName = '%f_anim_%n.avi'
 Rendering = 'on'
 Sound = 'on'
 StatusBar = 'on'
 Stereo3D = 'anaglyph'
 Stereo3DCameraOffset = 0.1
 Stereo3DHIT = 0
 Textures = 'on'
 ToolBar = 'on'
 Tooltips = 'on'
 Transparency = 'on'
 Triad = 'none'
 Viewpoint = 'View 1 - Observer'
 Wireframe = 'off'
 World = vrworld object: 1-by-1
 ZoomFactor = 1

Version History
Introduced before R2006a

See Also
vrfigure | get | vr.utils.stereo3d

Topics
“Interact with Virtual Reality Worlds”
“Create vrworld Object for a Virtual World”
“View a Virtual World in Stereoscopic Vision”

3 Functions

3-56

vrgcbf
Current callback vrfigure object

Syntax
f = vrgcbf

Description
f = vrgcbf returns a vrfigure object representing the virtual reality figure that contains the
callback currently being executed.

When no virtual reality figure callbacks are executing, vrgcbf returns an empty array of vrfigure
objects.

Version History
Introduced in R2008b

See Also
vrfigure | vr.canvas | “Create vrworld Object for a Virtual World” | “View a Virtual World in
Stereoscopic Vision”

 vrgcbf

3-57

vrgcf
Handle for active virtual reality figure

Syntax
h = vrgcf

Description
h = vrgcf returns the handle of the current virtual reality figure. The current virtual reality figure
is the currently active virtual reality figure window in which you can get and set the viewer
properties. If no virtual reality figure exists, the MATLAB software returns an empty vrfigure
object.

This method is most useful to query and set virtual reality figure properties.

Version History
Introduced in R2008b

See Also
vrfigure

3 Functions

3-58

vrgetpref
Values of Simulink 3D Animation preferences

Syntax
x = vrgetpref

x = vrgetpref('preference_name')

x = vrgetpref('preference_name','factory')

x = vrgetpref('factory')

Arguments
preference_name Name of the preference to read.

Description
x = vrgetpref returns the values of all the Simulink 3D Animation preferences in a structure
array.

x = vrgetpref('preference_name') returns the value of the specified preference. If
preference_name is a cell array of preference names, a cell array of corresponding preference
values is returned.

x = vrgetpref('preference_name','factory') returns the default value for the specified
preference.

x = vrgetpref('factory') returns the default values for all the preferences.

The following preferences are defined. For preferences that begin with the string DefaultFigure or
DefaultWorld, these values are the default values for the corresponding vrfigure or vrworld
property:

Preference Description
AutoCreateThumbnail Creates a thumbnail of a virtual world when you open

a virtual world. The default is 'off'. Setting this
preference to 'on' can be helpful if you download
multiple virtual worlds from the Internet, without
saving them. Creating thumbnails on file open
provides thumbnails the next time someone browses
through the downloaded worlds.

 vrgetpref

3-59

Preference Description
DataTypeBool Specifies the handling of the virtual world Bool data

type for vrnode/setfield and vrnode/getfield.
Valid values are 'logical' and 'char'. If set to
'logical', the virtual world Bool data type is
returned as a logical value. If set to 'char', the Bool
data type is returned 'on' or 'off'. Default is
'logical'.

DataTypeInt32 Specifies handling of the virtual world Int32 data
type for vrnode/setfield and vrnode/getfield.
Valid values are 'int32' and 'double'. If set to
'int32', the virtual world Int32 data type is
returned as int32. If set to 'double', the Int32
data type is returned as 'double'. Default is
'double'.

DataTypeFloat Specifies the handling of the virtual world float data
type for vrnode/setfield and vrnode/getfield.
Valid values are 'single' and 'double'. If set to
'single', the virtual world Float and Color data
types are returned as 'single'. If set to 'double',
the Float and Color data types are returned as
'double'. Default is 'double'.

DefaultCanvasNavPanel Controls the appearance of the control panel in the
vr.canvas object. Values are:

• 'none'

Panel is not visible.
• 'minimized'

Panel appears as a minimized icon in the right-hand
corner of the viewer.

• 'translucent'

Panel floats half transparently above the scene.
• 'opaque'

Panel floats above the scene.

Default: 'none'
DefaultCanvasUnits Specifies default units for new vr.canvas objects.

See vr.canvas for detailed description. Default is
'normalized'.

DefaultEditorMouseBehavior Specifies whether the mouse in the view pane is in
navigation mode or selection mode (for highlighting
corresponding nodes in the tree view pane). The
default is 'navigate'.

DefaultEditorHighlighting Specifies whether to highlight virtual world objects
selected in the view pane. The default is 'on'.

3 Functions

3-60

Preference Description
DefaultFigureAnti
Aliasing

Determines whether antialiasing is used by default for
new vrfigure objects. This preference also applies to
new vr.canvas objects. Valid values are 'off' and
'on'.

DefaultFigureCapture
FileName

Specifies default file name for vr.capture files. See
get for detailed description. Default is '%f_anim_
%n.tif'.

DefaultFigureDeleteFcn Specifies the default callback invoked when closing a
vrfigure object.

DefaultFigureLighting Specifies whether the lights are rendered by default
for new vrfigure objects. This preference also
applies to new vr.canvas objects. Valid values are
'off' and 'on'.

DefaultFigureMax
TextureSize

Specifies the default maximum size of a texture used
in rendering new vrfigure objects. This preference
also applies to new vr.canvas objects. Valid values
are 'auto' and 32 <= x <= video card limit, where
x is a power of 2.

DefaultFigureNavPanel Specifies the default appearance of the control panel
in the viewer. Valid values are 'opaque',
'translucent', 'none', 'halfbar', 'bar', and
'factory'. Default is 'halfbar'.

DefaultFigureNavZones Specifies whether the navigation zone is on or off by
default for new vrfigure objects. This preference
also applies to new vr.canvas objects. Valid values
are 'off' and 'on'.

DefaultFigurePosition Sets the default initial position and size of the
Simulink 3D Animation Viewer window. Valid value is a
vector of four doubles.

DefaultFigureRecord2D
CompressMethod

Specifies the default compression method for creating
2-D animation files for new vrfigure objects. Valid
values are '', 'auto', 'lossless', and
'codec_code'.

DefaultFigureRecord2D
CompressQuality

Specifies the default quality of 2-D animation file
compression for new vrfigure objects. Valid values
are 0-100.

DefaultFigureRecord2D
FileName

Specifies the default 2-D offline animation file name
for new vrfigure objects.

DefaultFigureRecord2DFPS Specifies the default frames per second playback
speed.

To have the 2D AVI animation play back at
approximately the same playback speed as the 3D
virtual world animation, set this preference to auto.

 vrgetpref

3-61

Preference Description
DefaultFigureRendering Specifies whether to render a vrfigure or

vr.canvas object. Turning off rendering improves
performance. For example, if your code does batch
operations on a virtual figure, you can turn off
rendering during that processing and then turn it back
on after the processing.

DefaultFigureStatusBar Specifies whether the status bar appears by default at
the bottom of the Simulink 3D Animation Viewer for
new vrfigure objects. Valid values are 'off' and
'on'.

DefaultFigureTextures Specifies whether textures should be rendered by
default for new vrfigure objects. This preference
also applies to new vr.canvas objects. See get for
detailed description. Default is 'on'.

DefaultFigureToolBar Specifies whether the toolbar appears by default on
the Simulink 3D Animation Viewer for new vrfigure
objects. Valid values are 'off' and 'on'.

DefaultFigure
Transparency

Specifies whether or not transparency information is
taken into account when rendering for new vrfigure
objects. This preference also applies to new
vr.canvas objects. Valid values are 'off' and 'on'.

DefaultFigureWireframe Specifies whether objects are drawn as solids or
wireframes by default for new vrfigure objects. This
preference also applies to new vr.canvas objects.
Valid values are 'off' and 'on'.

DefaultViewer Specifies which viewer is used to view a virtual scene.

• 'internal'

Default Simulink 3D Animation Viewer.
• 'web'

Web browser becomes viewer. This is the current
Web browser virtual world plug-in.

DefaultWorldRecord3D
FileName

Specifies the default 3-D animation file name for new
vrworld objects.

DefaultWorldRecordMode Specifies the default animation recording mode for
new vrworld objects. Valid values are 'manual' and
'scheduled'.

DefaultWorldRecord
Interval

Specifies the default start and stop times for scheduled
animation recording for new vrworld objects. Valid
value is a vector of two doubles.

DefaultWorldRemoteView Specifies whether the virtual world is enabled by
default for remote viewing for new vrworld objects.
Valid values are 'off' and 'on'.

3 Functions

3-62

Preference Description
DefaultWorldTimeSource Specifies the default source of the time for new

vrworld objects. Valid values are 'external' and
'freerun'.

Editor Specifies which virtual world editor to use. Path to the
virtual world editor. If this path is empty, the MATLAB
editor is used.

If you set the Editor as Builtin, then MATLAB uses
the built-in graphical Virtual Reality 3D file editor.

The path setting is active only if you select the Custom
option.

EditorPreserveLayout Specifies whether the 3D World Editor starts up with a
saved version of the layout of a virtual world when you
exited it or reverts to the default layout. The layout of
the virtual world display pane includes settings for the
view, viewpoints, navigation, and rendering. Valid
values are 'off' and 'on'. The default is on (use
saved layout).

HttpPort For remote access, IP port number used to access the
Simulink 3D Animation server over the Web via HTTP.
If you change this preference, you must restart the
MATLAB software before the change takes effect.

TransportBuffer For remote access, length of the transport buffer
(network packet overlay) for communication between
the Simulink 3D Animation server and its clients.

TransportTimeout Amount of time the Simulink 3D Animation server
waits for a reply from the client. If there is no
response from the client, the Simulink 3D Animation
server disconnects from the client.

VrPort For remote access, IP port used for communication
between the Simulink 3D Animation server and its
clients. If you change this preference, you must restart
the MATLAB software before the change takes effect.

The HttpPort, VrPort, and TransportBuffer preferences affect Web-based remote viewing of
virtual worlds. DefaultFigurePosition and DefaultNavPanel affect the Simulink 3D Animation
Viewer.

DefaultFigureNavPanel — Controls the appearance of the navigation panel in the Simulink 3D
Animation Viewer. For example, setting this value to 'translucent' causes the navigation panel to
appear translucent.

DefaultViewer — Determines whether the virtual scene appears in the default Simulink 3D
Animation Viewer or in your Web browser.

DefaultViewer Setting Description
'internal' Default Simulink 3D Animation Viewer.

 vrgetpref

3-63

DefaultViewer Setting Description
'web' Viewer is your Web browser.

Editor — Contains a path to the virtual world editor executable file. When you use the edit
command, Simulink 3D Animation runs the virtual world editor executable with all parameters
required to edit the virtual world file.

When you run the editor, Simulink 3D Animation uses the Editor preference value as if you typed it
into a command line. The following tokens are interpreted:

%matlabroot Refers to the MATLAB root folder
%file Refers to the virtual world file name

For instance, a possible value for the Editor preference is

`%matlabroot\bin\win64\meditor.exe %file'

If this preference is empty, the MATLAB editor is used.

HttpPort -- Specifies the network port to be used for Web access. The port is given in the Web URL
as follows:

http://server.name:port_number

The default value of this preference is 8123.

TransportBuffer — Defines the size of the message window for client-server communication. This
value determines how many messages, at a maximum, can travel between the client and the server at
one time.

Generally, higher values for this preference make the animation run more smoothly, but with longer
reaction times. (More messages in the line create a buffer that compensates for the unbalanced
delays of the network transfer.)

The default value is 5, which is optimal for most purposes. You should change this value only if the
animation is significantly distorted or the reaction times are very slow. On fast connections, where
delays are introduced more by the client rendering speed, this value has very little effect. Viewing on
a host computer is equivalent to an extremely fast connection. On slow connections, the correct value
can improve the rendering speed significantly but, of course, the absolute maximum is determined by
the maximum connection throughput.

VrPort — Specifies the network port to use for communication between the Simulink 3D Animation
server (host computer) and its clients (client computers). Normally, this communication is completely
invisible to the user. However, if you view a virtual world from a client computer, you might need to
configure the security network system (firewall) so that it allows connections on this port. The default
value of this preference is 8124.

Version History
Introduced before R2006a

3 Functions

3-64

See Also
“Set Simulink 3D Animation Preferences”

 vrgetpref

3-65

vrifs2patch
Convert virtual world IndexedFaceSet nodes to MATLAB patches

Syntax
vrifs2patch(ifs)

Description
vrifs2patch(ifs) converts the ifs array of existing IndexedFaceSet nodes to MATLAB patch
objects.

Note This function converts only geometry and color data of the source IndexedFaceSet node.

Examples

Convert IndexedFaceSet Nodes to MATLAB Patches

This command converts three IndexedFaceSet nodes to MATLAB® patch objects.

Open virtual world containing an IndexedFaceSet node.

w1 = vrworld('*sl3dlib/objects/Components/Shapes/Torus_High.wrl');
open(w1);

View the virtual world as a virtual figure.

vrfig1 = vrfigure(w1, ...
 'Name', 'Virtual world containing source IndexedFaceSet node', ...
 'CameraBound', 'off', ...
 'CameraPosition',[0 40 0], ...
 'CameraDirection',[0 -1 0], ...
 'CameraUpVector',[0 0 -1]);
vrdrawnow;

3 Functions

3-66

Convert the IndexedFaceSet a MATLAB patch and show it.

figure('Name', 'Resulting patch');
tp = vrifs2patch(w1.torushi.children.geometry);

 vrifs2patch

3-67

Change the patch color, show the axes grid, rotate the camera, and enable mouse rotation.

tp.FaceColor = 'red';

axs = gca;
axs.XGrid = 'on';
axs.YGrid = 'on';
axs.ZGrid = 'on';

camorbit(45, -20);

rotate3d on

3 Functions

3-68

Input Arguments
ifs — IndexedFaceSet nodes to convert
array

IndexedFaceSet nodes, specified as an array.

Version History
Introduced in R2015a

See Also
vrpatch2ifs | patch

Topics
“Introduction to Patch Objects”

 vrifs2patch

3-69

vrimport
Import 3D file into virtual world or node

Syntax
node = vrimport(source)
node = vrimport(parent,source)
node = vrimport(___ ,format)
[node,virtualWorld] = vrimport(___)

Description
node = vrimport(source) creates an empty VRML virtual world and imports the source 3D file
into it. The format of the 3D file is detected automatically. You can import these file formats:

• FBX (Autodesk® FilmBoX format)
• DAE (Collada digital asset exchange)
• SDF (simulation description format)
• STL (STereoLithography)
• URDF (unified robot description file)
• XML (Physical Modeling XML files)

The function returns a handle to the newly created node.

node = vrimport(parent,source) specifies the existing virtual world or node to import the 3D
source file into.

node = vrimport(___ ,format) explicitly specifies the file format of the 3D source file (for
example, 'urdf'). If the format of the source file does not match the format specified in the format
argument, the function returns an error.

[node,virtualWorld] = vrimport(___) returns the handle of the new node and the handle of
the virtual world that contains that node.

Examples

Import STL File Into an Empty Virtual World

This example imports an STL file rover_1.stl, a model of a simple wheeled robot. The example also
shows how to add visual appearance and material nodes to the imported model in the virtual world.

Create a virtual world with the imported model.

[n,w] = vrimport(which('Rover_1.stl'));

View the virtual world with the imported shape.

view(w)

3 Functions

3-70

Scale the imported model from mm to dm to see it in the view.

n.scale = [0.01 0.01 0.01]

Rotate the rover around the x-axis.

w.Rover_Transform.rotation = [1 0 0 -pi/2]

Explore the virtual world structure.

get(w,'Nodes')

STL imported shapes have no visual properties. Add an Appearance and a Materials node to the
shape. The Appearance node is created in the appearance field of the Shape. The Material node
is create in the material field of the Appearance node.

app = vrnode(w.Rover_Shape,'appearance','Rover_App','Appearance');
mat = vrnode(w.Rover_App,'material','Rover_Mat','Material');

Set the diffuse color to a shade of blue.

w.Rover_Mat.diffuseColor = [0 0.5 1]

Save the virtual world.

 vrimport

3-71

save(w,'Rover_1.x3d')

Import a DAE file

This example imports a .dae format file into a virtual world.

Import the fox.dae file to a node in a virtual world.

[n,w] = vrimport(which('fox.dae'))

n =

 vrnode object: 1-by-1

 COLLADA_fox_Transform_0001 (Transform) []

w =

 vrworld object: 1-by-1

 (No Virtual Reality 3D File Associated)

View the imported visual representation.

view(w)

3 Functions

3-72

Save the virtual world.

save(w,'fox.x3d')

Input Arguments
source — 3D source file
character vector

3D source file path, specified as a character vector. The 3D file can be in DAE, SDF, STL, or URDF
format.

format — File format of source 3D file
'fbx' | 'dae' | 'sdf' | 'stl' | 'urdf'

File format of source 3D file, specified as a character vector. Use this argument to specify explicitly
the required format for the source 3D file.

parent — Virtual world or node to import 3D source file to
vrworld object | vrnode object

Virtual world or node to import 3D source file into, specified as a virtual world handle or node handle.

 vrimport

3-73

• If the parent is a virtual world, the imported node is placed at the ROOT node of the parent.
• If the parent is a node in a virtual world, the imported node is placed in the children field of the

node.

Output Arguments
node — New node
vrnode object

New node, returned as a vrnode object.

virtualWorld — Virtual world containing new node
vrworld object

Virtual world containing new node, returned as a vrworld object.

Version History
Introduced in R2016b

See Also
vrcadcleanup | vrphysmod

Topics
“Import STL and Physical Modeling XML Files”
“Import Visual Representations of Robot Models”
“Link to Simulink and Simscape Multibody Models”

3 Functions

3-74

vrinsertrobot
Add robot to virtual world

Syntax
node = vrinsert(RBT)
node = vrinsertrobot(parent,RBT)
[node, W] = vrinsertrobot(...)
[node, W, tforms] = vrinsertrobot(...)

Description
node = vrinsert(RBT) creates an empty virtual world and inserts the visual representation of the
Robotics System Toolbox rigidBodyTree object RBT into it. It then returns a handle to the newly
created node in the virtual world.

node = vrinsertrobot(parent,RBT) inserts the visual representation of the Robotics System
Toolbox rigidBodyTree object RBT into an existing virtual world or node specified by parent. If
parent is a virtual world, object specified by RBT is placed at its root. If parent is a node within a
virtual world, the inserted object is placed as a direct child of parent.

[node, W] = vrinsertrobot(...) also returns a handle to the virtual world W in addition to the
visualization of the rigidBodyTree object represented by node.

[node, W, tforms] = vrinsertrobot(...) also returns a handle to the appropriate transforms
tforms, which can be used to make additional changes to the robot pose.

Examples

Import Robot to an Empty World

This example shows you how to import and insert a rigidBodyTree object for the KUKA LBR iiwa
robot manipulator into a newly created world.

Import Robot

Create the rigidBodyTree object from the URDF file of the associated robot

RBT = importrobot('iiwa7.urdf');
RBT.DataFormat = 'Row';

For more information on the rigidBodyTree structure, see rigidBodyTree (Robotics System
Toolbox).

Insert and View Robot

Create an empty world and open it.

 vrinsertrobot

3-75

w = vrworld('');
open(w);
view(w);

Create a node in an empty world using vrinsertrobot.

node = vrinsertrobot(w,RBT);

View the created world in the Simulink 3D Animation™ internal viewer.

vrdrawnow

Insert Robot into an Existing World

This example shows how to insert a rigidBodyTree object to an existing world and update the
viewer.

Open a Virtual World

Open up a virtual world in the Simulink 3D Animation™ viewer. This example uses the
robot_scene.wrl world. To create your own virtual world, see “Create a Virtual World”

3 Functions

3-76

robotWorld = vrworld('robot_scene','new');
open(robotWorld);

Add Robot to the Existing World

Import the KUKA LBR iiwa robot from its URDF definition into a rigidBodyTree object.

rbt = importrobot('iiwa7.urdf');
rbt.DataFormat = 'row';

Add the robot to the robotWorld world object created in the previous step.

n = vrinsertrobot(robotWorld,rbt);

Update the scene, even if the viewer is closed. Open the updated world and scene in the internal
viewer.

vrdrawnow
view(robotWorld);

 vrinsertrobot

3-77

Add Robot to World and Change its Pose

This example shows you how to insert a robot into a virtual world and update its pose

Import the Robot and Setup the World

Import the KUKA LFR iiwa robot from its URDF definition and insert it to the virtual world created
from robot_scene.x3d.

RBT = importrobot('iiwa7.urdf');
RBT.DataFormat = 'row';
robotWorld = vrworld('robot_scene');
open(robotWorld);

Get Transforms of Current Pose of the Robot

The tforms output argument contains a list of transforms that describe the robot pose in its initial or
'home' configuration.

[node, W, tforms] = vrinsertrobot(robotWorld, RBT);
vrfigure(robotWorld);

3 Functions

3-78

Change the Pose of the Robot

vrupdaterobot(RBT, tforms, randomConfiguration(RBT));
vrdrawnow;
vrfigure(robotWorld);

 vrinsertrobot

3-79

Input Arguments
RBT — Robot description
rigidBodyTree object

Robotics System Toolbox rigidBodyTree object. For more information, see rigidBodyTree
(Robotics System Toolbox).

parent — Virtual world node
vrworld object | vrnode object

Node in the virtual world hierarchy under which to insert the robot specified by RBT. If a vrworld
object is provided, the robot is inserted at the ROOT node of the world.

Output Arguments
node — Robot object handle
vrnode object

3 Functions

3-80

Handle to the newly inserted robot in the virtual world, returned as a vrnode object. For more
information, see vrnode.

W — Virtual world handle
vrworld object

Handle to the virtual world containing the robot, returned as a vrworld object. For more
information, see vrworld.

tforms — List of transforms for the robot
cell array

List of transformations applied to the robot, returned as a cell array of vrnode objects.

Version History
Introduced in R2018b

See Also
vrworld | vrimport | importrobot (Robotics System Toolbox) | rigidBodyTree (Robotics System
Toolbox)

 vrinsertrobot

3-81

vrinstall
Install and check Simulink 3D Animation components

Syntax
vrinstall('action')

vrinstall action

x = vrinstall('action')

Arguments
action Type of action for this function. Values are -interactive, -selftest, -

check, -install, and -uninstall.

Description
You use this function to install on Windows platforms the Ligos V-Realm Builder. The V-Realm Builder
is an optional virtual world editor. For details, see “Install V-Realm Editor”.

Note The vrinstall command does no perform any action on a Linux® platform.

The actions you can perform

Action Value Description
-selftest Checks the integrity of the current installation. If this function reports an

error, you should reinstall the Simulink 3D Animation software. The
function vrinstall automatically does a self-test with any other actions.

-interactive Checks for the installed components, and then displays a list of uninstalled
components you can choose to install.

-check Checks the installation of optional components. If the given component is
installed, returns 1. If the given component is not installed, returns 0. If
you do not specify a component, displays a list of components and their
status.

-install Installs optional components. This action requires you to specify the
component name.

-uninstall Uninstalls optional components. This option is currently available for the
editor only. Note that this action does not remove the files for the editor
from the installation folder. It removes the editor registry information.

Examples
Install the virtual world editor. This command associates V-Realm Builder with the Edit button in the
Block Parameters dialog boxes.

3 Functions

3-82

vrinstall -install

Version History
Introduced before R2006a

 vrinstall

3-83

vrjoystick
Create joystick object

Description
Create a joystick object.

Creation
Description

joy = vrjoystick(id) creates a joystick object capable of interfacing with a joystick device. The
id parameter is a one-based joystick ID. The joystick ID is the system ID assigned to the given
joystick device. You can find the properties of the joystick that is connected to the system in the Game
Controllers section of the system Control Panel.

joy = vrjoystick(id,'forcefeedback') enables force feedback if the joystick supports this
capability.

Object Functions
axis Read status of joystick
button Read status of joystick
caps Joystick capabilities
close Close and invalidate joystick
force Apply force feedback to joystick axis
pov Apply force feedback to joystick axis
read Read status of joystick button, axes and pov

Version History
Introduced in R2007b

See Also
“Set Simulink 3D Animation Preferences”

3 Functions

3-84

axis
Read status of joystick

Syntax
a = axis(joy, n)

Description
a = axis(joy, n) reads the status of joystick with axis number n.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Axis number
real positive scalar | real positive vector

Axis number of joystick, specified as a scalar or a vector.

Output Arguments
a — Status of joystick
real positive scalar in the range [-1, 1]

Status of joystick axis, returned as a real positive scalar in the range [-1,1]. If n is a vector, multiple
buttons are returned.

Version History
Introduced in R2007b

 axis

3-85

button
Read status of joystick

Syntax
b = button(joy,n)

Description
b = button(joy,n) reads the status of joystick button number n.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Button number
real positive scalar | real positive vector

Button number of joystick, specified as a scalar or a vector.

Output Arguments
b — Status of button
0 | 1

Status of joystick button, returned as either 0 or 1. If n is a vector, multiple buttons are returned.

Version History
Introduced in R2007b

See Also
vrjoystick

3 Functions

3-86

caps
Joystick capabilities

Syntax
c = caps(joy)

Description
c = caps(joy) returns joystick capabilities, such as the number of axes, buttons, POVs, and force-
feedback axes. The return value is a structure with fields named Axes, Buttons, POVs, and Forces.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

Output Arguments
c — Joystick capabilities
structure

Joystick capabilities, returned as a structure.

Version History
Introduced in R2007b

 caps

3-87

close
Close and invalidate joystick

Syntax
close(joy)

Description
close(joy) closes and invalidates joystick object.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

Version History
Introduced in R2007b

See Also
vrjoystick

3 Functions

3-88

force
Apply force feedback to joystick axis

Syntax
force(joy,n,f)

Description
force(joy,n,f) applies force feedback f to joystick axis n.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Axis number
real positive scalar | real positive vector

Axis number of joystick, specified as a scalar or a vector.

f — Force feedback to be applied
scalar | vector

Force feedback to be applied to joystick axis, specified as a scalar or a vector in the range [-1,1].
Values of f should be in range of -1 to 1, and the number of elements in f should either match the
number of elements of n, or f can be a scalar to be applied to all the axes specified by n.

Version History
Introduced in R2007b

See Also
vrjoystick

 force

3-89

pov
Apply force feedback to joystick axis

Syntax
p = pov(joy,n)

Description
p = pov(joy,n) reads the status of joystick point of view (POV) of axis number n.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Axis number
real positive scalar | real positive vector

Axis number of joystick, specified as a scalar or a vector.

Output Arguments
p — Point of view
real scalar

Point of view, returned as a real scalar in degrees. When a value of -1 is no axis is selected.

Version History
Introduced in R2007b

See Also
vrjoystick

3 Functions

3-90

read
Read status of joystick button, axes and pov

Syntax
[a,b,p] = read(joy)
[a,b,p] = read(joy,f)

Description
[a,b,p] = read(joy) reads the status of axes, buttons, and point of views (POVs) of the specified
joystick.

[a,b,p] = read(joy,f) additionally applies feedback forces to a force-feedback joystick.

Input Arguments
joy — Joystick object
vrjoystick object

Joystick, specified as a vrjoystick object.

n — Axis number
real positive scalar | real positive vector

Axis number of joystick, specified as a scalar or a vector.

f — Force feedback to be applied
scalar | vector

Force feedback to be applied to joystick axis, specified as a scalar or a vector in the range [-1,1].
Values of f should be in range of -1 to 1, and the number of elements in f should either match the
number of elements of n, or f can be a scalar to be applied to all the axes specified by n.

Output Arguments
a — Status of joystick
real positive scalar in the range [-1, 1]

Status of joystick axis, returned as a real positive scalar in the range [-1,1]. If n is a vector, multiple
buttons are returned.

b — Status of button
0 | 1

Status of joystick button, returned as either 0 or 1. If n is a vector, multiple buttons are returned.

p — Point of view
real scalar

 read

3-91

Point of view, returned as a real scalar in degrees. When a value of -1 is no axis is selected.

Version History
Introduced in R2007b

See Also
vrjoystick

3 Functions

3-92

vrlib
Open Simulink block library for Simulink 3D Animation

Syntax
vrlib

Description
The Simulink library for the Simulink 3D Animation product has a number of blocks and utilities. You
can access these blocks in one of the following ways:

• In the MATLAB Command Window, type vrlib.
• From a Simulink block diagram, select the Library Browser from the Simulation tab of the

toolstrip.
• In the MATLAB Command Window, click the Simulink icon.

Version History
Introduced before R2006a

 vrlib

3-93

vrnode
Create node or handle to existing node

Syntax
mynode = vrnode

mynode = vrnode([])

mynode = vrnode(vrworld_object,'node_name')

mynode = vrnode(vrworld_object, 'node_name','node_type')

mynode = vrnode(vrworld_object, 'USE', othernode)

mynode = vrnode(parent_node,'parent_field', 'node_name',
'node_type')

mynode = vrnode(parent_node,'parent_field', 'USE',
'othernode')

Arguments
vrworld_object Name of a vrworld object representing a virtual world.
node_name Name of the node.
node_type Type of the node.
parent_node Name of the parent node that is a vrnode object.
parent_field Name of the field of the parent node.
'USE' Enables a USE reference to another node.
othernode Name of another node for a USE reference.

Description
mynode = vrnode creates an empty vrnode handle that does not reference any node.

mynode = vrnode([]) creates an empty array of vrnode handles.

mynode = vrnode(vrworld_object,'node_name') creates a handle to an existing named node
in the virtual world.

mynode = vrnode(vrworld_object, 'node_name','node_type') creates a new node called
node_name of type node_type on the root of the virtual world. It returns the handle to the newly
created node.

mynode = vrnode(vrworld_object, 'USE', othernode) creates a USE reference to the node
othernode on the root of the world vrworld_object. It returns the handle to the virtual world to
the original node.

3 Functions

3-94

mynode = vrnode(parent_node,'parent_field', 'node_name','node_type') creates a
new node called node_name of type node_type that is a child of the parent_node and resides in
the field parent_field. It returns the handle to the newly created node.

mynode = vrnode(parent_node,'parent_field', 'USE', 'othernode') creates a USE
reference to the node othernode as a child of node parentnode and resides in the field
parentfield. It returns the handle to the original node.

A vrnode object identifies a virtual world node in a way very similar to a handle. If you apply the
vrnode method to a node that does not exist, the method creates a node, the vrnode object, and
returns the handle to the vrnode object. If you apply the vrnode method to an existing node, the
method returns the handle to the vrnode object associated with this node.

Method Summary
Method Description
delete Remove vrnode object
fields Virtual world field summary of node object
isfield Returns true if field is name of vrnode object field
get Property value of vrnode object
getfield Field value of vrnode object
isvalid 1 if vrnode object is valid, 0 if not
interpolate Interpolate field value of vrnode object
set Change property of virtual world node
setfield Change field value of vrnode object
sync Enable or disable synchronization of virtual world fields with client
optimize Change geometries to reduce number of vertices

Version History
Introduced before R2006a

See Also
vrnode/delete | vrnode/get | vrnode/getfield | vrnode/set | vrnode/setfield | vrworld
| optimize

 vrnode

3-95

vrnode/delete
Remove vrnode object

Syntax
delete(vrnode_object)

delete(n)

Arguments
vrnode_object Name of a vrnode object.

Description
delete(vrnode_object) deletes the virtual world node.

delete(n) deletes the vrnode object referenced by the vrnode handle n. If n is a vector of vrnode
handles, multiple nodes are deleted.

As soon as a node is deleted, it and all its child objects are removed from all clients connected to the
virtual world.

Version History
Introduced before R2006a

See Also
vrworld/delete

3 Functions

3-96

vrnode/interpolate
Interpolate field value

Syntax
interpolate(Node,FieldName,NewValue)

interpolate(Node,FieldName, NewValue,Shape)

interpolate(Node,FieldName,NewValue,Shape, Duration)

interpolate(Node,FieldName,NewValue,Shape,Duration,FPS)

Arguments
Node Node with field, can be a vector.
FieldName String array or cell array of character vectors.
NewValue String array or cell array of character vectors.
Shape Shape of the interpolation curve:

• 'sweep' – Smoothly increasing and decreasing interpolation speed
• 'linear' – constant interpolation speed
• 'hill' – Double-sweep shape with return to the original value
• 'triangle' – Double linear shape with return to the original value

Duration Interpolation duration, in seconds. Default is 1.
FPS Number of interpolation points per one second of duration time.

Description
interpolate(Node,FieldName,NewValue) interpolates any writable numerical field specified by
the FieldName from its current value to NewValue. If Node is a vector, then FieldName and
NewValue must be cell arrays of the same size. The software simultaneously interpolates multiple
node fields.

interpolate(Node,FieldName,NewValue,Shape) specifies the shape of the interpolation curve.

interpolate(Node,FieldName,NewValue,Shape,Duration) specifies the interpolation
duration.

interpolate(Node,FieldName,NewValue,Shape,Duration,FPS) specifies the number of
interpolation points per second.

Version History
Introduced in R2023a

 vrnode/interpolate

3-97

See Also
vrnode/get | vrnode/set

3 Functions

3-98

vrnode/isfield
Returns true if field is name of vrnode object field

Syntax
x = fields(vrnode_object,fieldnames)

Arguments
vrnode_object Name of a vrnode object representing the node to be queried.
fieldnames String array or cell array of character vectors.

Description
x = fields(vrnode_object,fieldnames) returns a logical array, x, the same size as that of
fieldnames. x contains true for the elements of fieldnames that are the names of fields in the
vrnode and false otherwise.

Version History
Introduced in R2023a

See Also
vrnode/get | vrnode/set

 vrnode/isfield

3-99

vrnode/fields
virtual world field summary of node object

Syntax
fields(vrnode_object)

x = fields(vrnode_object)

Arguments
vrnode_object Name of a vrnode object representing the node to be queried.

Description
fields(vrnode_object) displays a list of fields of the node associated with the vrnode object in
the MATLAB Command Window.

x = fields(vrnode_object) returns the fields of the node associated with the vrnode object in a
structure array. The resulting structure contains a field for every field with the following subfields:

• Type is the name of the field type, for example, 'MFString', 'SFColor'.
• Access is the accessibility description of the data class, for example, 'eventIn',

'exposedField'.
• Sync is the synchronization status 'on' or 'off'. See also vrnode/sync.

Version History
Introduced before R2006a

See Also
vrnode/get | vrnode/set

3 Functions

3-100

vrnode/get
Property value of vrnode object

Syntax
get(vrnode_object)

x = get(vrnode_object)

x = get(vrnode_object, 'property_name')

Arguments
vrnode_object Name of a vrnode object representing the node to be queried.
property_name Name of the property to be read.

Description
get(vrnode_object) lists all vrnode properties in the MATLAB Command Window.

x = get(vrnode_object), where vrnode_object is a scalar, returns a structure where each field
name is the name of a property and each field contains the value of that property.

x = get(vrnode_object, 'property_name') returns the value of given property.

If vrnode_object is a vector of vrnode handles, get returns an M-by-1 cell array of values, where
M is equal to length(vrnode_object).

The vrnode property values are case sensitive. Property names are not case sensitive.

The vrnode object properties allow you to control the behavior and appearance of objects. The
vrnode objects have the following properties. All these properties are read only.

Property Value Description
Fields Cell array Valid field names for the node.
Name String Name of the node.
Type String Type of the node. The value is a string (for example,

'Transform', 'Shape').
World Handle Handle of the parent vrworld object. This is a vrworld object

that represents the node's parent world.

Version History
Introduced before R2006a

 vrnode/get

3-101

See Also
vrnode | vrnode/getfield | vrnode/set | vrnode/setfield

3 Functions

3-102

vrnode/getfield
Field value of vrnode object

Syntax
getfield(vrnode_object)

x = getfield(vrnode_object)

x = getfield(vrnode_object,'fieldname')

Arguments
vrnode_object Name of a vrnode object representing the node to be queried.
fieldname Name of the vrnode object field whose values you want to query.

Description
getfield(vrnode_object) displays all the field names and their current values for the respective
node.

x = getfield(vrnode_object), where vrnode_object is a scalar, returns a structure where
each field name is the name of a vrnode field and each field contains the value of that field.

x = getfield(vrnode_object,'fieldname')returns the value of the specified field for the node
referenced by the vrnode_object handle. If vrnode_object is a vector of vrnode handles,
getfield returns an M-by-1 cell array of values, where M is equal to length(vrnode_object).

If 'fieldname' is a 1-by-N or N-by-1 cell array of strings containing field names, getfield returns
an M-by-N cell array of values.

Tip Using dot notation is the recommended approach for accessing nodes.

Note For Transform nodes, the getfield function does not list the Simulink 3D Animation
extensions rotation_abs and translation_abs. To access those fields, use dot notation. For
example:

gcoords = myWorld.Arm.rotation_abs

Version History
Introduced before R2006a

See Also
vrnode | vrnode/get | vrnode/set | vrnode/setfield

 vrnode/getfield

3-103

vrnode/isvalid
1 if vrnode object is valid, 0 if not

Syntax
x = isvalid(vrnode_object_vector)

Arguments
vrnode_object_vector Name of an array of vrnode objects to be queried.

Description
This method returns an array that contains 1 when the elements of vrnode_object_vector are
valid vrnode objects, and 0 when they are not.

The vrnode object is considered valid if the following conditions are met:

• The parent world of the node exists.
• The parent world of the node is open.
• The node with the given vrnode handle exists in the parent world.

Version History
Introduced before R2006a

See Also
isvalid | vrworld/isvalid

3 Functions

3-104

vrnode/set
Change property of virtual world node

Syntax
x = set(vrnode_object, 'property_name','property_value')

Arguments
vrnode_object Name of a vrnode object representing a node in the virtual world.
property_name Name of a property.
property_value Value of a property.

Description
x = set(vrnode_object, 'property_name','property_value') changes the specified
property of the vrnode object to the specified value.

The vrnode property values are case sensitive, while property names are not case sensitive.

The vrnode property values are case sensitive, while property names are not case sensitive.

The vrnode objects have the following properties. All these properties are read only.

Property Value Description
Fields Cell array Valid field names for the node. Read only.
Name String Name of the node. Read only.
Type String Type of the node. The value is a string (for example,

'Transform', 'Shape'). Read only.
World Handle Handle of the parent vrworld object. This is a vrworld object

that represents the node's parent world. Read only.

Currently, nodes have no settable properties.

Version History
Introduced before R2006a

See Also
vrnode | vrnode/get | vrnode/getfield | vrnode/setfield

 vrnode/set

3-105

vrnode/setfield
Change field value of vrnode object

Syntax
x = setfield(vrnode_object,'fieldname','fieldvalue')

Arguments
vrnode_object Name of a vrnode object representing the node to be changed.
fieldname Name of the vrnode object field whose values you want to set.
fieldvalue Value of fieldname.

Description
x = setfield(vrnode_object,'fieldname','fieldvalue')changes the specified field of the
vrnode object to the specified value. You can specify multiple field names and field values in one line
of code by grouping them in pairs. For example, x = setfield(vrnode_object,
'fieldname1', 'fieldvalue1', 'fieldname2', 'fieldvalue2', ...).

Note that field names are case sensitive, while property names are not.

Note The dot notation is the preferred method for accessing nodes. For example:

vrnode_object.fieldname=fieldvalue;

Version History
Introduced before R2006a

See Also
vrnode | vrnode/get | vrnode/getfield | vrnode/set

3 Functions

3-106

vrnode/sync
Enable or disable synchronization of fields with client

Syntax
sync(vrnode_object, 'field_name', 'action')

Arguments
vrnode_object Name of a vrnode object representing the node.
field_name Name of the field to be synchronized.
action The action parameter determines what should be done:

• 'on' enables synchronization of this field.
• 'off' disables synchronization of this field.

Description
The sync method controls whether the value of a field is synchronized.

If you set the field to be synchronized to 'on', the field value is updated every time it is changed on
the client computer. If you set the field to 'off', the host computer ignores the changes on the client
computer.

Synchronized fields add more traffic to the network line because the value of the field must be resent
by the client any time it is changed. Because of this, mark for synchronization only the fields you need
to scan for changes made on clients (typically sensors). By default, fields are not synchronized and
their values reflect only settings from MATLAB or the Simulink software.

Note Synchronization is meaningful only for readable fields. Readable fields are of data class
eventOut and exposedField. You cannot enable synchronization for eventIn or nonexposed
fields.

Version History
Introduced before R2006a

See Also
vrnode | vrnode/get

 vrnode/sync

3-107

vrori2dir
Convert viewpoint orientation to direction

Syntax
vrori2dir(r)
vrori2dir(r,options)

Description
vrori2dir(r) converts the viewpoint orientation, specified by a rotation vector, r, to a direction
the viewpoint points to.

vrori2dir(r,options) converts the viewpoint orientation with the default algorithm parameters
replaced by values defined in options.

The options structure contains the parameter epsilon that represents the value below which a
number will be treated as zero (default value is 1e-12).

Version History
Introduced in R2007b

See Also
vrdir2ori on page 3-30 | vrrotmat2vec on page 3-120 | vrrotvec | vrrotvec2mat on page 3-
121

3 Functions

3-108

vrpatch2ifs
Convert MATLAB patches to IndexedFaceSet nodes

Syntax
node = vrpatch2ifs(patches,world)
node = vrpatch2ifs(patches,shape)
node = vrpatch2ifs(patches,parent)
vrpatch2ifs(patches,ifs)

Description
node = vrpatch2ifs(patches,world) converts the patches array and saves the result into the
vrnode array node. Each resulting IndexedFaceSet node in node is wrapped by the created
Shape node residing in a root level of the world virtual world.

node = vrpatch2ifs(patches,shape) converts the patches array and saves the result into the
vrnode array node. Each resulting IndexedFaceSet node in node is a child of the respective Shape
node in the shape array. If the Shape node already contains an IndexedFaceSet node, that
IndexedFaceSet is overwritten. The number of patches must equal the number of Shape nodes.

Note This function converts only geometry and color data of the patch.

node = vrpatch2ifs(patches,parent) converts the patches array and saves the result into
the vrnode array node. Each resulting IndexedFaceSet node in node is wrapped by the created
Shape node that is a child of the parent node.

vrpatch2ifs(patches,ifs) converts the patches array and saves the result into ifs array of
existing IndexedFaceSet nodes, overwriting the IndexedFaceSet nodes. The number of patches
must equal the number of IndexedFaceSet nodes.

Examples

Convert MATLAB Patches to IndexedFaceSet Nodes

This command converts three MATLAB® patches to IndexedFaceSet nodes.

Create surface using MATLAB peaks function.

fig = figure('Name','Source peaks surface');
s = surf(peaks);

 vrpatch2ifs

3-109

Convert the peaks surface to a patch.

peaksPatch = patch(surf2patch(s));
delete(s);
shading interp;

3 Functions

3-110

Create and open an empty virtual world.

w2 = vrworld('');
open(w2);

Create and bind viewpoint

dv = vrnode(w2, 'DefaultViewpoint','Viewpoint');
dv.position = [-1 15 30];
dv.orientation = [-0.38 -0.93 0 0.55];
setfield(dv,'set_bind',true); %#ok<STFLD,SFLD>

Convert the patch to an IndexedFaceSet nodes. The resulting nodes are created in the root level of
supplied vrworld object)

vrpatch2ifs(peaksPatch,w2);

 vrpatch2ifs

3-111

Show the result.

vrfig2 = vrfigure(w2,'Name',...
 'Virtual world containing resulting IndexedFaceSet node');

3 Functions

3-112

Input Arguments
patches — MATLAB patches to convert
array

MATLAB patches, specified as an array.

world — Virtual world that contains Shape nodes
vrworld object

Virtual world that contains Shape nodes, specified as a vrworld object.

parent — Parent grouping node
vrnode object

Parent grouping node, specified as a vrnode object.

shape — Shape array
array of Shape nodes

 vrpatch2ifs

3-113

Shape array, specified as an array of Shape nodes.

ifs — IndexedFaceSet nodes
array

IndexedFaceSet nodes, specified as an array.

Output Arguments
node — Conversion result
vrnode array

Conversion result, returned as a vrnode array.

Version History
Introduced in R2015a

See Also
vrifs2patch | patch

Topics
“Introduction to Patch Objects”

3 Functions

3-114

vrphysmod
Add virtual reality visualization framework to block diagrams

Syntax
vrphysmod(virtualWorldFile,system)

Description
vrphysmod(virtualWorldFile,system) updates the Simulink system (model or subsystem) that
the Simscape Multibody smimport function generates.

The model must be on the MATLAB path or already open prior to calling the vrphysmod function.

You can then save, rename, modify, and run the model. When you save the resulting model, be sure to
preserve the relative path between the Simulink system and the virtual world 3D file.

Examples

Update Model

To update the model four_link using the file four_link.wrl:

vrphysmod('four_link.wrl', 'four_link');

Update Subsystem

To update the subsystem four_link/FOURLINK_ASM using the VRML file four_link.wrl, ensure
that the model that contains the subsystem is open, then:

vrphysmod('four_link.wrl', 'four_link/FOURLINK_ASM');

Update Current System

To update the current system using the file four_link.wrl:

vrphysmod('four_link.wrl', gcs);

Input Arguments
virtualWorldFile — Virtual world file
.wrl file | .x3d file | .x3dv file

Virtual world file, specified as either .wrl, .x3d or .x3dv files.

 vrphysmod

3-115

The .wrl extension is optional for a VRML virtual world file. If the specified system was created with
Simscape Multibody First Generation smimport function, you can specify also an .x3d or .x3dv file
for the virtualWorldFile.

As necessary, vrphysmod adds additional blocks to visualize the mechanical system in virtual reality.
The association between mechanical system bodies and corresponding nodes found in the virtual
world 3D file is based on the name correspondence.

If your model contains several VR Sink blocks that refer to the same virtualWorldFile, this
function attempts to consolidate the animation signals of that virtual scene into one VR Sink block.

system — Model or subsystem to be updated
Simulink model

Model or subsystem to be updated, created by the smimport function.

Note The SolidWorks VRML export filter does not preserve part instance names and the part order
in the resulting virtual world 3D file. Therefore, the association between such parts and the
corresponding bodies in the block diagram is not always an exact match. In such cases, the function
identifies nodes with partial matches and issues warnings. To prevent these warnings, ensure that
node DEF names in the virtual world 3D file are identical to their corresponding bodies in the
Simulink model before running this function.

If you receive this warning and the set of virtual world 3D files does not originate in the SolidWorks
product, ignore the message. Other supported CAD tools also generate part names with similar
names, but preserve them across different export formats.

Version History
Introduced in R2009a

See Also
stl2vrml | vrcadcleanup | smimport

3 Functions

3-116

vrplay
Play VRML animation file

Syntax
vrplay
vrplay(filename)
x=vrplay(filename)

Description
vrplay opens the 3D Animation Player, which you use to open and play virtual world animation files.

vrplay(filename) opens the 3D Animation Player and loads the virtual world filename.

x=vrplay(filename) also returns a 3D Animation Player figure handle.

vrplay works only with VRML animation files created using the Simulink 3D Animation virtual world
recording functionality.

When you create additional vrplay windows using the File > New Window command, the window
respects the current setting of the DefaultViewer property. By default, the File > New Window
command creates the new player window implemented as a MATLAB figure.

Simulink 3D Animation Player App
You can open the Simulink 3D Animation Player from the Apps tab in the MATLAB toolstrip as well as
the Simulink toolstrip. In the tab, scroll to the Simulation Graphics and Reporting section and
click 3D Animation Player.

 vrplay

3-117

Keyboard Support
The playback controls can also be accessed from the keyboard.

Key Function
F, Page Down Fast forward
J Jump to time
L Loop
P Play/pause toggle
S Stop
R, Page Up Rewind
Right arrow key Step forward
Left arrow key Step reverse
Up arrow key First
Down arrow key Last

Examples
To play the animation file based on the vr_octavia example, run
vrplay('octavia_scene_anim.wrl').

Version History
Introduced in R2006a

See Also
vrview

Topics
“Record Offline Animations”

3 Functions

3-118

vrrotvec
Calculate rotation between two vectors

Syntax
r = vrrotvec(a,b)
r = vrrotvec(a,b,options)

Description
r = vrrotvec(a,b) calculates a rotation needed to transform the 3D vector a to the 3D vector b.

r = vrrotvec(a,b,options) calculates the rotation with the default algorithm parameters
replaced by values defined in options.

Input Arguments
a, b — 3-D vector
vector

3-D vectors between which rotation is being calculated.
Data Types: single | double

options — Structure containing epsilon
structure

Structure containing the parameter epsilon that represents the value below which a number will be
treated as zero (default value is 1e-12). Default value of epsilon is 1e-12.
Data Types: struct

Output Arguments
r — axis angle rotation vector
row vector

Axis-angle rotation, returned as a four element row vector. The first three elements specify the
rotation axis, and the last element defines the angle of rotation.

Version History
Introduced in R2007b

See Also
vrrotmat2vec on page 3-120 | vrrotvec2mat on page 3-121

 vrrotvec

3-119

vrrotmat2vec
Convert rotation from matrix to axis-angle representation

Syntax
r = vrrotmat2vec(m)
r = vrrotmat2vec(m,options)

Description
r = vrrotmat2vec(m) returns an axis-angle representation of rotation defined by the rotation
matrix m.

r = vrrotmat2vec(m,options) converts the rotation with the default algorithm parameters
replaced by values defined in options.

The options structure contains the parameter epsilon that represents the value below which a
number will be treated as zero (default value is 1e-12).

The result r is a four-element axis-angle rotation row vector. The first three elements specify the
rotation axis, and the last element defines the angle of rotation.

Version History
Introduced in R2007b

See Also
vrrotvec | vrrotvec2mat on page 3-121

3 Functions

3-120

vrrotvec2mat
Convert rotation from axis-angle to matrix representation

Syntax
m = vrrotvec2mat(r)
m = vrrotvec2mat(r,options)

Description
m = vrrotvec2mat(r) returns a matrix representation of the rotation defined by the axis-angle
rotation vector, r.

m = vrrotvec2mat(r,options) returns a matrix representation of rotation defined by the axis-
angle rotation vector r, with the default algorithm parameters replaced by values defined in
options.

The options structure contains the parameter epsilon that represents the value below which a
number will be treated as zero (default value is 1e-12).

The rotation vector, r, is a row vector of four elements, where the first three elements specify the
rotation axis, and the last element defines the angle.

To rotate a column vector of three elements, multiply it by the rotation matrix. To rotate a row vector
of three elements, multiply it by the transposed rotation matrix.

Version History
Introduced in R2007b

See Also
vrrotvec | vrrotmat2vec on page 3-120

 vrrotvec2mat

3-121

vrsetpref
Change Simulink 3D Animation preferences

Syntax
vrsetpref('preference_name', 'preference_value')

vrsetpref('factory')

Arguments
preference_name Name of the preference.
preference_value New value of the preference.

Description
This function sets the given Simulink 3D Animation preference to a given value. The following
preferences are defined. For preferences that begin with the string DefaultFigure or
DefaultWorld, these values are the default values for the corresponding vrfigure or vrworld
property:

Preference Description
AutoCreateThumbnail Creates a thumbnail of a virtual world when you open a

virtual world. The default is 'off'. Setting this
preference to 'on' can be helpful if you download
multiple virtual worlds from the Internet, without saving
them. Creating thumbnails on file open provides
thumbnails the next time someone browses through the
downloaded worlds.

DataTypeBool Specifies the handling of the virtual world Bool data
type for vrnode/setfield and vrnode/getfield.
Valid values are 'logical' and 'char'. If set to
'logical', the virtual world Bool data type is returned
as a logical value. If set to 'char', the Bool data type is
returned 'on' or 'off'. Default is 'logical'.

DataTypeInt32 Specifies handling of the virtual world Int32 data type
for vrnode/setfield and vrnode/getfield. Valid
values are 'int32' and 'double'. If set to 'int32',
the virtual world Int32 data type is returned as int32.
If set to 'double', the Int32 data type is returned as
'double'. Default is 'double'.

3 Functions

3-122

Preference Description
DataTypeFloat Specifies the handling of the virtual world float data

type for vrnode/setfield and vrnode/getfield.
Valid values are 'single' and 'double'. If set to
'single', the virtual world Float and Color data
types are returned as 'single'. If set to 'double', the
Float and Color data types are returned as 'double'.
Default is 'double'.

DefaultCanvasNavPanel Controls the appearance of the control panel in the
vr.canvas object. Values are:

• 'none'

Panel is not visible.
• 'minimized'

Panel appears as a minimized icon in the right-hand
corner of the viewer.

• 'translucent'

Panel floats half transparently above the scene.
• 'opaque'

Panel floats above the scene.

Default: 'none'
DefaultCanvasUnits Specifies default units for new vr.canvasobjects. See

vr.canvas for detailed description. Default is
'normalized'.

DefaultEditorMouseBehavior Specifies whether the mouse in the view pane is in
navigation mode or selection mode (for highlighting
corresponding nodes in the tree view pane). The default
is 'navigate'. To make selection mode the default, set
the preference to 'select'.

DefaultEditorHighlighting Specifies whether to highlight virtual world objects
selected in the view pane. The default is 'on'. To avoid
highlighting selected virtual objects by default, set the
preference to 'off'.

DefaultFigureAnti
Aliasing

Determines whether antialiasing is used by default for
new vrfigure objects. This preference also applies to
new vr.canvasobjects. Valid values are 'off' and
'on'.

DefaultFigureCapture
FileName

Specifies default file name for capturing viewer figures.
See get for detailed description. Default is '%f_anim_
%n.tif'.

DefaultFigureDeleteFcn Specifies the default callback invoked when closing a
vrfigure object.

 vrsetpref

3-123

Preference Description
DefaultFigureLighting Specifies whether the lights are rendered by default for

new vrfigure objects. This preference also applies to
new vr.canvas objects. Valid values are 'off' and
'on'.

DefaultFigureMax
TextureSize

Specifies the default maximum size of a texture used in
rendering new vrfigure objects. This preference also
applies to new vr.canvas objects. Valid values are
'auto' and 32 <= x <= video card limit, where x is a
power of 2.

DefaultFigureNavPanel Specifies the default appearance of the control panel in
the viewer. Valid values are 'opaque',
'translucent', 'none', 'halfbar', 'bar', and
'factory'. Default is 'halfbar'.

DefaultFigureNavZones Specifies whether the navigation zone is on or off by
default for new vrfigure objects. This preference also
applies to new vr.canvasobjects. Valid values are
'off' and 'on'.

DefaultFigurePosition Sets the default initial position and size of the Simulink
3D Animation Viewer window. Valid value is a vector of
four doubles.

DefaultFigureRecord2D
CompressMethod

Specifies the default compression method for creating 2-
D animation files for new vrfigure objects. Valid values
are '', 'auto', 'lossless', and 'codec_code'.

DefaultFigureRecord2D
CompressQuality

Specifies the default quality of 2-D animation file
compression for new vrfigure objects. Valid values are
0-100.

DefaultFigureRecord2D
FileName

Specifies the default 2-D offline animation file name for
new vrfigure objects.

DefaultFigureRecord2DFPS Specifies the default frames per second playback speed.

To have the 2D AVI animation play back at approximately
the same playback speed as the 3D virtual world
animation, set this preference to auto.

DefaultFigureRendering Specifies whether to render a vrfigure or vr.canvas
object. Turning off rendering improves performance. For
example, if your code does batch operations on a virtual
figure, you can turn off rendering during that processing
and then turn it back on after the processing.

DefaultFigureStatusBar Specifies whether the status bar appears by default at
the bottom of the Simulink 3D Animation Viewer for new
vrfigure objects. Valid values are 'off' and 'on'.

DefaultFigureTextures Specifies whether textures should be rendered by
default for new vrfigure objects. This preference also
applies to new vr.canvas objects. See get for detailed
description. Default is 'on'.

3 Functions

3-124

Preference Description
DefaultFigureToolBar Specifies whether the toolbar appears by default on the

Simulink 3D Animation Viewer for new vrfigure
objects. Valid values are 'off' and 'on'.

DefaultFigure Transparency Specifies whether or not transparency information is
taken into account when rendering for new vrfigure
objects. This preference also applies to new vr.canvas
objects. Valid values are 'off' and 'on'.

DefaultFigureWireframe Specifies whether objects are drawn as solids or
wireframes by default for new vrfigure objects. This
preference also applies to new vr.canvas objects. Valid
values are 'off' and 'on'.

DefaultViewer Specifies which viewer is used to view a virtual scene.

• 'internal'

Default Simulink 3D Animation Viewer.
• 'web'

Web browser becomes viewer. This is the current
Web browser virtual world plug-in.

DefaultWorldRecord3D
FileName

Specifies the default 3-D animation file name for new
vrworld objects.

DefaultWorldRecordMode Specifies the default animation recording mode for new
vrworld objects. Valid values are 'manual' and
'scheduled'.

DefaultWorldRecord
Interval

Specifies the default start and stop times for scheduled
animation recording for new vrworld objects. Valid
value is a vector of two doubles.

DefaultWorldRemoteView Specifies whether the virtual world is enabled by default
for remote viewing for new vrworld objects. Valid
values are 'off' and 'on'.

DefaultWorldTimeSource Specifies the default source of the time for new vrworld
objects. Valid values are 'external' and 'freerun'.

 vrsetpref

3-125

Preference Description
Editor Specifies which virtual world editor to use. Path to the

virtual world editor. If this path is empty, the MATLAB
editor is used.

The path setting is active only if you select the Custom
option.

To open a virtual world file in a third-party editor, do not
use the vredit command. For example, to open a
virtual world in the Ligos V-Realm Builder editor:

1 Set the default editor to V-Realm Builder. In
MATLAB, enter:

vrsetpref('Editor','*VREALM');
2 To open a file in the V-Realm editor, in MATLAB

navigate to a virtual world file, right-click, and
select Edit.

Note The vredit command opens the 3D World
Editor, regardless of the default editor preference
setting.

EditorPreserveLayout Specifies whether the 3D World Editor starts up with a
saved version of the layout of a virtual world when you
exited it or reverts to the default layout. The layout of
the virtual world display pane includes settings for the
view, viewpoints, navigation, and rendering. Valid values
are 'off' and 'on'. The default is on (use saved
layout).

HttpPort IP port number used to access the Simulink 3D
Animation server over the Web via HTTP. If you change
this preference, you must restart the MATLAB software
before the change takes effect.

TransportBuffer Length of the transport buffer (network packet overlay)
for communication between the Simulink 3D Animation
server and its clients.

TransportTimeout Amount of time the Simulink 3D Animation server waits
for a reply from the client. If there is no response from
the client, the Simulink 3D Animation server disconnects
from the client.

VrPort IP port used for communication between the Simulink
3D Animation server and its clients. If you change this
preference, you must restart the MATLAB software
before the change takes effect.

When you use 'factory' as a single argument, all preferences are reset to their default values. If
you use 'factory' for a preference value, that single preference is reset to its default.

3 Functions

3-126

The HttpPort, VrPort, and TransportBuffer preferences affect Web-based viewing of virtual
worlds. DefaultFigurePosition and DefaultNavPanel affect the Simulink 3D Animation Viewer.
Changes to the HttpPort or VrPort preferences take effect only after you restart the MATLAB
software.

DefaultFigureNavPanel — Controls the appearance of the navigation panel in the Simulink 3D
Animation Viewer. For example, setting this value to 'translucent' causes the navigation panel to
appear translucent.

DefaultViewer — Determines whether the virtual scene appears in the default Simulink 3D
Animation Viewer or in your Web browser.

DefaultViewer Setting Description
'internal' Default Simulink 3D Animation Viewer.
'web' Viewer is the default Web browser with the virtual world

plug-in.

Editor — Contains a path to the virtual world editor executable file. When you use the edit
command, Simulink 3D Animation runs the virtual world editor executable with all parameters
required to edit the virtual world file.

When you run the editor, Simulink 3D Animation uses the Editor preference value as if you typed it
into a command line. The following tokens are interpreted:

%matlabroot Refers to the MATLAB root folder
%file Refers to the virtual world 3D file name

For instance, a possible value for the Editor preference is

`%matlabroot\bin\win64\meditor.exe %file'

If this preference is empty, the MATLAB editor is used.

HttpPort -- Specifies the network port to be used for remote Web access. The port is given in the
Web URL as follows:

http://server.name:port_number

The default value of this preference is 8123.

TransportBuffer — Defines the size of the message window for client-server communication. This
value determines how many messages, at a maximum, can travel between the client and the server at
one time.

Generally, higher values for this preference make the animation run more smoothly, but with longer
reaction times. (More messages in the line create a buffer that compensates for the unbalanced
delays of the network transfer.)

The default value is 5, which is optimal for most purposes. You should change this value only if the
animation is significantly distorted or the reaction times are very slow. On fast connections, where
delays are introduced more by the client rendering speed, this value has very little effect. Viewing on
a host computer is equivalent to an extremely fast connection. On slow connections, the correct value
can improve the rendering speed significantly but, of course, the absolute maximum is determined by
the maximum connection throughput.

 vrsetpref

3-127

VrPort — Specifies the network port to use for communication between the Simulink 3D Animation
server (host computer) and its clients (client computers). Normally, this communication is completely
invisible to the user. However, if you view a virtual world from a client computer, you might need to
configure the security network system (firewall) so that it allows connections on this port. The default
value of this preference is 8124.

Version History
Introduced before R2006a

See Also
vrgetpref

3 Functions

3-128

vrspacemouse
Create space mouse object

Syntax
mouse = vrspacemouse(id)

Description
mouse = vrspacemouse(id) creates a space mouse object capable of interfacing with a space
mouse input device. The id parameter is a string that specifies the space mouse connection: COM1,
COM2, COM3, COM4, USB1, USB2, USB3, or USB4.

The vrspacemouse object has several properties that influence the behavior of the space mouse
input device. The properties can be read or modified using dot notation (e.g., mouse.DominantMode
= true;).

Properties
Valid properties are (property names are case-sensitive):

Property Description
PositionSensitivity Mouse sensitivity for translations. Higher values correspond

to higher sensitivity.
RotationSensitivity Mouse sensitivity for rotations. Higher values correspond to

higher sensitivity.
DisableRotation Fixes the rotations at initial values, allowing you to change

positions only.
DisableTranslation Fixes the positions at the initial values, allowing you to

change rotations only.
DominantMode If this property is true, the mouse accepts only the prevailing

movement and rotation and ignores the others. This mode is
very useful for beginners using a space mouse.

UpperPositionLimit Position coordinates for the upper limit of the mouse.
LimitPosition Enables mouse position limits. If false, the object ignores the

UpperPositionLimit and LowerPositionLimit
properties.

LowerPositionLimit Position coordinates for the lower limit of the mouse.
NormalizeOutputAngle Determines whether the integrated rotation angles should

wrap on a full circle (360°). This is not used when you read
the Output Type as Speed.

InitialPosition Initial condition for integrated translations. This is not used
when you set the Output Type to Speed.

 vrspacemouse

3-129

Property Description
InitialRotation Initial condition for integrated rotations. This is not used

when you set the Output Type to Speed.

Methods
Method Description
button b = button(mouse, n) reads the status of space mouse

button number n. Button status is returned as logical 0 if not
pressed and logical 1 if pressed. n can be a vector to return
multiple buttons.

close close(mouse) closes and invalidates the space mouse
object. The object cannot be used once it is closed.

position p = position(mouse, n) reads the position of space
mouse axis number n. n can be a vector to return positions
of multiple axes. Translations and rotations are integrated.
Outputs are the position and orientation in the form of roll/
pitch/yaw angles.

speed s = speed(mouse, n) reads the speed of space mouse
axis number n. n can be a vector to return the speeds of
multiple axes. No transformations are done. Outputs are the
translation and rotation speeds.

viewpoint p = viewpoint(mouse) reads the space mouse
coordinates in virtual world viewpoint format. Translations
and rotations are integrated. Outputs are the position and
orientation in the form of an axis and an angle. You can use
these values as viewpoint coordinates in virtual world.

Version History
Introduced in R2007b

See Also
“Set Simulink 3D Animation Preferences”

3 Functions

3-130

vr.utils.stereo3d class

Stereoscopic vision settings for vr.canvas and vr.figure objects

Description

Tip Use the vr.utils.stereo3d class for advanced tuning of stereoscopic viewer and canvas
properties. You can select and use basic stereoscopic settings from the Viewer menu.

Specifies these stereoscopic vision properties:

• Active, anaglyph, or no stereoscopic vision
• Camera offset
• Camera angle
• Color filter for the left and right cameras
• Horizontal image translation (HIT)

Use a vr.utils.stereo3d object to set the Stereo3D, Stereo3DCameraOffset, and
Stereo3DHIT stereoscopic vision properties of vrfigure and vr.canvas objects. Specifying a
vr.utils.stereo3d object to set one vrfigure and vr.canvas property also sets the other
stereoscopic vision properties. Using a vr.utils.stereo3d object also specifies color filters for the
left and right cameras. You cannot set camera color filters directly using the vrfigure/set method
or vr.canvas properties.

Construction
stereoVision = vr.utils.stereo3d.OFF disables stereoscopic vision.

stereoVision = vr.utils.stereo3d.ACTIVE enables active stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH enables red-cyan anaglyph stereoscopic vision.

stereoVision = vr.utils.stereo3d.RED_CYAN enables red-cyan anaglyph stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH_GREEN_MAGENTA enables green-magenta
anaglyph stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH_RED_GREEN enables red-green anaglyph
stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH_RED_BLUE enables red-blue anaglyph
stereoscopic vision.

stereoVision = vr.utils.stereo3d.ANAGLYPH_YELLOW_BLUE enables yellow-blue anaglyph
stereoscopic vision.

 vr.utils.stereo3d class

3-131

Output Arguments

stereoVision — Stereoscopic vision settings for vr.canvas and vrfigure objects
vr.utils.stereo3d object

Stereoscopic vision settings for vr.canvas and vrfigure objects, represented by a
vr.utils.stereo3d object.

Properties
CameraAngle — Camera angle
vr.utils.stereo3D.DEFAULT_CAMERA_ANGLE | radians

Camera angle, specified using the predefined DEFAULT_CAMERA_ANGLE or in radians. This property
is in effect when you enable stereoscopic vision.

This property does not apply to vr.canvas or vrfigure objects.

CameraOffset — Camera offset
0.1 (default) | floating-point number between 0 and 1

Camera offset, specified as a number representing the distance in virtual world units of left/right
camera from parallax. The parallax is the difference in the apparent position of an object viewed from
two cameras.

This property sets the Stereo3DCameraOffset property of a vr.canvas or vrfigure object.

HIT — Horizontal image translation
predefined DEFAULT_HIT | floating-point number

Horizontal image translation, specified as either the predefined DEFAULT_HIT or as a floating-point
number from 0 through 1, inclusive. The number of pixels for stereo 3D horizontal image translation
(HIT) derives from this number. Horizontal image translation is the horizontal relationship of the two
stereo images. By default, the background image is at zero and the foreground image appears to pop
out from the monitor toward the person viewing the virtual world. The larger the value, the further
back the background appears to be.

This property sets the Stereo3DHIT property of a vr.canvas or vrfigure object.

LeftCameraFilter — Color filter of left camera
row vector of nine floating-point numbers | predefined filter

Color filter of the left camera, specified as a row vector of nine floating-point numbers or using a
predefined filter.

If you specify a row vector, use floating-point numbers from 0 through 1. The first three numbers
represent the red value, the second three numbers represent the green value, and the last three
numbers represent the blue value. For example, specifying 1 for the first three numbers and zeros for
the other numbers produces a pure red filter.

The predefined filters are:

• CAMERA_FILTER_FULL
• CAMERA_FILTER_RED

3 Functions

3-132

• CAMERA_FILTER_CYAN
• CAMERA_FILTER_GREEN
• CAMERA_FILTER_MAGENTA
• CAMERA_FILTER_YELLOW
• CAMERA_FILTER_BLUE

This property specifies the left camera filter for vr.canvas or vrfigure objects.
Example: stereo3d_object.LeftCameraFilter = [0.1 0.5 0.5 0.0 0.0 0.0 1.0 0.5
0.5];

Example: stereo3d_object.LeftCameraFilter = stereo3d_object.CAMERA_FILTER_RED

Mode — Stereoscopic vision mode
read only

Stereoscopic vision mode. Read only.

• STEREO3D_OFF — No stereoscopic vision.
• STEREO3D_ACTIVE — Active stereoscopic vision. Stereoscopic vision uses quad-buffered

rendering. You can use a graphics card driver to output stereoscopic vision. This mode allows
active stereoscopic vision via shutter glasses.

• STEREO3D_ANAGLYPH — Anaglyph stereoscopic vision. Stereoscopic vision is enabled using red-
cyan anaglyph. Use appropriate anaglyph 3D glasses to see the effect.

This property sets the Stereo3D property of a vr.canvas or vrfigure object.

RightCameraFilter — Color filter of right camera
row vector of nine floating-point numbers | predefined filter

Color filter of the right camera, specified as a row vector of nine floating-point numbers or using a
predefined filter.

If you specify a row vector, use floating-point numbers from 0 through 1. The first three numbers
represent the red value, the second three numbers represent the green value, and the last three
numbers represent the blue value. For example, specifying 1 for the first three numbers and zeros for
the other numbers produces a pure red filter.

The predefined filters are:

• CAMERA_FILTER_FULL
• CAMERA_FILTER_RED
• CAMERA_FILTER_CYAN
• CAMERA_FILTER_GREEN
• CAMERA_FILTER_MAGENTA
• CAMERA_FILTER_YELLOW
• CAMERA_FILTER_BLUE

This property specifies the right camera filter for vr.canvas or vrfigure objects.
Example: stereo3d_object.RightCameraFilter = [0.1 0.5 0.5 0.0 0.0 0.0 1.0 0.5
0.5];

 vr.utils.stereo3d class

3-133

Example: stereo3d_object.RightCameraFilter = stereo3d_object.CAMERA_FILTER_RED

Examples

Define and Apply Stereoscopic Vision Settings

Create a virtual world.

w = vrworld('octavia_scene');
open(w);
c = vr.canvas(w);

Specify stereoscopic vision settings.

s3d = vr.utils.stereo3d.ANAGLYPH_RED_CYAN;
s3d.CameraOffset = 0.05;
s3d.CameraAngle = pi/128;

Modify the red component of filter for the left camera.

3 Functions

3-134

s3d.LeftCameraFilter(1:3) = s3d.LeftCameraFilter(1:3)...
 + [0.1 -0.05 -0.05];

Apply stereoscopic vision settings of vr.utils.stereo3d object s3d to vr.canvas object c.

 set(c,'Stereo3D',s3d)

Version History
Introduced in R2015a

See Also
vr.canvas | vrfigure

Topics
“View a Virtual World in Stereoscopic Vision”

 vr.utils.stereo3d class

3-135

vrupdaterobot
Update RigidBodyTree robot pose

Syntax
vrupdaterobot(RBT, tforms, config)

Description
vrupdaterobot(RBT, tforms, config) updates the robot pose from its current configuration
using the config argument.

Examples

Add Robot to World and Change its Pose

This example shows you how to insert a robot into a virtual world and update its pose

Import the Robot and Setup the World

Import the KUKA LFR iiwa robot from its URDF definition and insert it to the virtual world created
from robot_scene.x3d.

RBT = importrobot('iiwa7.urdf');
RBT.DataFormat = 'row';
robotWorld = vrworld('robot_scene');
open(robotWorld);

Get Transforms of Current Pose of the Robot

The tforms output argument contains a list of transforms that describe the robot pose in its initial or
'home' configuration.

[node, W, tforms] = vrinsertrobot(robotWorld, RBT);
vrfigure(robotWorld);

3 Functions

3-136

Change the Pose of the Robot

vrupdaterobot(RBT, tforms, randomConfiguration(RBT));
vrdrawnow;
vrfigure(robotWorld);

 vrupdaterobot

3-137

3 Functions

3-138

Input Arguments
RBT — Robot description
rigidBodyTree object

Robotics System Toolbox rigidBodyTree object. For more information, see rigidBodyTree
(Robotics System Toolbox).

tforms — Robot transforms
cell array

List of robot transforms, specified as a cell array of vrnode objects.

config — Desired end configuration
structure | vector

Desired pose of the robot, specified in the same format as the RBT.DataFormat field of the
rigidBodyTree object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
struct

 vrupdaterobot

3-139

Version History
Introduced in R2018b

See Also
vrinsertrobot | rigidBodyTree (Robotics System Toolbox)

3 Functions

3-140

vrview
View virtual world using Simulink 3D Animation viewer or Web browser

Syntax
vrview

x = vrview('filename')

x = vrview('filename','-internal')

x = vrview('filename','-web')

Description
vrview opens the default Web browser and loads the Simulink 3D Animation software Web page
containing a list of virtual worlds available for viewing.

x = vrview('filename') creates a virtual world associated with the .wrl file, opens the virtual
world, and displays it in the Simulink 3D Animation Viewer or the Web browser depending on the
value of the DefaultViewer preference. The handle to the virtual world is returned.

x = vrview('filename','-internal') creates a virtual world associated with the wrl file,
opens the virtual world, and displays it in the Simulink 3D Animation Viewer.

x = vrview('filename','-web') creates a virtual world associated with the .wrl file, opens the
virtual world, and displays it in your Web browser.

vrview('filename#viewpointname') specifies a default viewpoint.

Version History
Introduced before R2006a

See Also
vrplay | vrworld | vrworld/open | vrworld/view

 vrview

3-141

vrwho
List virtual worlds in memory

Syntax
vrwho

x = vrwho

Description
If you do not specify an output parameter, vrwho displays a list of virtual worlds in memory in the
MATLAB Command Window.

If you specify an output parameter, vrwho returns a vector of handles to existing vrworld objects,
including those opened from the Simulink interface.

Version History
Introduced before R2006a

See Also
vrclear | vrwhos | vrworld

3 Functions

3-142

vrwhos
List details about virtual worlds in memory

Syntax
vrwhos

Description
vrwhos displays a list of virtual worlds currently in memory, with a description, in the MATLAB
Command Window. The relation between vrwho and vrwhos is similar to the relation between who
and whos.

Version History
Introduced before R2006a

See Also
vrclear | vrwho

 vrwhos

3-143

vrworld
Create new vrworld object associated with virtual world

Syntax
myworld = vrworld(filename)

myworld = vrworld(filename,'reuse')

myworld = vrworld(filename, 'new')

myworld = vrworld

myworld = vrworld('')

myworld = vrworld([])

Arguments
filename String containing the name of the virtual world 3D file from which the virtual

world is loaded. You can specify .wrl, .x3d, or .x3dv). If no file extension is
specified, the file extension .wrl is assumed.

'new' Argument to create a virtual world associated with filename.

Description
myworld = vrworld(filename) creates a virtual world associated with the virtual world 3D file
filename and returns its handle. If the virtual world already exists, a handle to the existing virtual
world is returned. Specify the file name as a string.

myworld = vrworld(filename,'reuse') has the same functionality as myworld =
vrworld(filename).

myworld = vrworld('filename', 'new') creates a virtual world associated with the virtual
world 3D file filename and returns its handle. It always creates a new virtual world object, even if
another vrworld object associated with the same file already exists.

myworld = vrworld creates an invalid vrworld handle

myworld = vrworld('') creates an empty vrworld object that is not associated with any virtual
world 3D file

myworld = vrworld([]) returns an empty array of returns an empty array of vrworld handles.

A vrworld object identifies a virtual world in a way very similar to a handle. All functions that affect
virtual worlds accept a vrworld object as an argument to identify the virtual world.

If the given virtual world already exists in memory, the handle to the existing virtual world is
returned. A second virtual world is not loaded into memory. If the virtual world does not exist in
memory, it is loaded from the associated virtual world 3D file. The newly loaded virtual world is
closed and must be opened before you can use it.

3 Functions

3-144

The vrworld object associated with a virtual world remains valid until you use either delete or
vrclear.

Examples
myworld = vrworld('vrpend.wrl')

Method Summary
Method Description
addexternproto Add externproto declaration to virtual world.
close Close virtual world
delete Remove virtual world from memory
edit Open virtual world file in external virtual world editor
get Property value of vrworld object
isvalid 1 if vrworld object is valid, 0 if not
nodes List nodes available in virtual world
open Open virtual world
reload Reload virtual world from virtual world 3D file
save Write virtual world to virtual world 3D file
set Change property values of vrworld object
view View virtual world
optimize Change geometries to reduce number of vertices

Version History
Introduced before R2006a

See Also
vrworld/close | vrworld/delete | vrworld/open | “Create vrworld Object for a Virtual World” |
“Open a Virtual World with MATLAB”

 vrworld

3-145

vrworld/addexternproto
Add externproto declaration to virtual world

Syntax
addexternproto(vrworld_object, protofile, protoname)

addexternproto(vrworld_object, protofile, protoname, protodef)

Arguments
vrworld_object A vrworld object representing the virtual world.
protofile String containing the name of the prototype file from which the

EXTERNPROTO declaration is added.
protoname String containing the name of the EXTERNPROTO declaration.
protodef String containing a new name for the EXTERNPROTO declaration.

Description
addexternproto(vrworld_object, protofile, protoname) adds an EXTERNPROTO
declaration from file protofile to the virtual world. The handle vrworld_object refers to the
virtual world. The EXTERNPROTO declaration is identified as protoname. If protoname is a cell array
of identifiers, the function adds multiple EXTERNPROTOs from one file to the virtual world.

addexternproto(vrworld_object, protofile, protoname, protodef) adds an
EXTERNPROTO declaration from file protofile to the virtual world. The handle vrworld_object
refers to the virtual world. The EXTERNPROTO declaration is identified as protoname. If protoname
is a cell array of identifiers, the function adds multiple EXTERNPROTOs from one file to the virtual
world. This command then renames the new EXTERNPROTO declaration to protodef.

In both cases, the EXTERNPROTO declaration becomes equivalent to the PROTO declaration. In other
words, protoname or protodef becomes an internal PROTO type in the virtual scene associated with
vrworld_object. After you save the virtual world, these PROTO declarations no longer require a
reference to the original file, protofile, that contains the EXTERNPROTO declarations.

Version History
Introduced in R2008b

See Also
vrworld/close | vrworld/delete | vrworld/open | “Create vrworld Object for a Virtual World” |
“Open a Virtual World with MATLAB”

3 Functions

3-146

vrworld/close
Close virtual world

Syntax
close(vrworld_object)

Arguments
vrworld_object A vrworld object representing the virtual world.

Description
This method changes the virtual world from an opened to a closed state:

• If the world was opened more than once, you must use an appropriate number of close calls
before the virtual world closes.

• If vrworld_object is a vector of vrworld objects, all associated virtual worlds close.
• If the virtual world is already closed, close does nothing.

Opening and closing virtual worlds is a mechanism of memory management. When the system needs
more memory and the virtual world is closed, you can discard its contents at any time.

Generally, you should close a virtual world when you no longer need it. This allows you to reuse the
memory it occupied. The vrworld objects associated with this virtual world stay valid after it is
closed, so the virtual world can be opened again without creating a new vrworld object.

Examples
myworld = vrworld('vrpend.wrl')
open(myworld)
close(myworld)

Version History
Introduced before R2006a

See Also
vrworld | vrworld/delete | vrworld/open | “Close and Delete a vrworld Object”

 vrworld/close

3-147

vrworld/delete
Remove virtual world from memory

Syntax
delete(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The delete method removes from memory the virtual world associated with a vrworld object. The
virtual world must be closed before you can delete it.

Deleting a virtual world frees the virtual world from memory and invalidates all existing vrworld
objects associated with the virtual world.

If vrworld_object is a vector of vrworld objects, all associated virtual worlds are deleted.

You do not commonly use this method. One of the possible reasons to use this method is to ensure
that a large virtual world is removed from memory before another memory-consuming operation
starts.

Version History
Introduced before R2006a

See Also
vrworld | vrclear | vrworld/open | “Close and Delete a vrworld Object”

3 Functions

3-148

vrworld/edit
Open virtual world file in virtual world editor

Syntax
edit(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The edit method opens the virtual world 3D file associated with the vrworld object in a virtual
world editor. The Editor preference specifies the editor to use. See vrsetpref for details on setting
preferences.

The editor saves any changes you make directly to a virtual world file. If the virtual world is open,

• Use the save command in the virtual world editor to save the changes to a virtual world file. In
the MATLAB interface, the changes appear after you reload the virtual world.

• Use the save method in the MATLAB software to replace the modified virtual world 3D file. Any
changes you made in the editor are lost.

Version History
Introduced before R2006a

See Also
vrworld/reload | vrworld/save | vrworld/delete | vrworld/open | “Close and Delete a
vrworld Object” | “Create vrworld Object for a Virtual World”

 vrworld/edit

3-149

vrworld/get
Property value of vrworld object

Syntax
get(vrworld_object)

x = get(vrworld_object)

x = get(vrworld_object, 'property_name')

Arguments
vrworld_object A vrworld object representing a virtual world.
property_name Name of the property.

Description
get(vrworld_object) displays all the virtual world properties and their values.

x = get(vrworld_object) returns an M-by-1 structure where the field names are the names of
the virtual world properties. Each field contains the associated property value. M is equal to
length(vrworld_object).

x = get(vrworld_object, 'property_name') returns the value of the specified property.

• If vrworld_object is a vector of vrworld handles, the get method returns an M-by-1 cell array
of values where M is equal to length(vrworld_object).

• If property_name is a 1-by-N or N-by-1 cell array of strings containing field names, the get
method returns an M-by-N cell array of values.

The following are properties of vrworld objects. Names are not case sensitive.

Property Value Description
Clients Scalar Number of clients currently viewing the virtual

world. Read only.
ClientUpdates 'off' | 'on'

Default: 'on'

Client cannot or can update the virtual scene.
Read/write.

Canvases Vector of canvases Vector of handles of canvases currently open for
this world.

Description String.

Default: automatically taken from
the virtual world 3D file property
title

Description of the virtual world as it appears on
the main Web page. Read/write.

3 Functions

3-150

Property Value Description
Figures Vector of vrfigure objects Vector of handles to Simulink 3D Animation

Viewer windows currently viewing the virtual
world. Read only.

FileName String Name of the associated virtual world 3D file.
Read only.

Nodes Vector of vrnode objects Vector of vrnode objects for all named nodes in
the virtual world. Read only.

Open 'off' | 'on'

Default: 'off'

Indicates a closed or open virtual world. Read
only.

Record3D 'off' | 'on'

Default: 'off'

Enables 3-D animation recording. Read/write.

Record3DFileName String.

Default: '%f_anim_%n.wrl'

3-D animation file name. The string can contain
tokens that are replaced by the corresponding
information when the animation recording takes
place. For details, see “File Name Tokens”.
Read/write.

Recording 'off' | 'on'

Default: 'off'

Animation recording toggle. This property acts
as the main recording switch. Read/write.

RecordMode 'manual' | 'scheduled'

Default: 'manual'

Animation recording mode. Read/write.

RecordInterval Vector of two doubles

Default: [0 0]

Start and stop times for scheduled animation
recording. Corresponds to the virtual world
object Time property. Read/write.

RemoteView 'off' | 'on'

Default: 'off'

Remote access flag. If the virtual world is
enabled for remote viewing, it is set to 'on';
otherwise, it is set to 'off'. Read/write.

Rendering 'off' | 'on'

Default: 'on'

Render vrworld object in the Simulink 3D
Animation Viewer, specifying 'on' or 'off'.
Turning off rendering improves performance.
For example, if your code does batch operations
on a virtual world, you can turn off rendering
during that processing and then turn it back on
after the processing.

Time Double Current time in the virtual world. Read/write.

 vrworld/get

3-151

Property Value Description
TimeSource 'external' | 'freerun'

Default: 'external'

Source of the time for the virtual world. If set to
'external', time in the scene is controlled
from the MATLAB interface (by setting the Time
property) or the MATLAB interface (simulation
time).

If set to 'freerun', time in the scene advances
independently based on the system timer. Read/
write.

View 'off' | 'on'

Default: 'on'

Indicates an unviewable or viewable virtual
world. Read/write.

Viewpoints Vector of vrnode objects Vector of vrnode objects representing
viewpoints defined in the virtual world. Read
only.

The ClientUpdates property is set to 'on' by default and can be set by the user. When it is set to
'off', the viewers looking at this virtual world should not update the view according to the virtual
world changes. That is, the view is frozen until this property is changed to 'on'. This is useful for
preventing tearing effects with complex animations. Before every animation frame, set
ClientUpdates to 'off', make the appropriate modifications to the object positions, and then
switch ClientUpdates back to 'on'.

The Description property defaults to '(untitled)' and can be set by the user. If the virtual
world is loaded from a virtual world 3D file containing a WorldInfo node with a title property, the
Description property is loaded from the virtual world 3D file instead.

The Nodes property is valid only when the virtual world is open. If the virtual world is closed, Nodes
always contains an empty vector.

The RemoteView property is set to 'off' by default and can be set by the user. If it is set to 'on',
all viewers can access the virtual world through the Web interface. If it is set to 'off', only host
viewers can access it.

The View property is set to 'on' by default and can be set by the user. When it is set to 'off', the
virtual world is not accessible by the viewer. You rarely use this property.

Version History
Introduced before R2006a

See Also
vrworld | vrworld/set

3 Functions

3-152

vrworld/isvalid
1 if vrworld object is valid, 0 if not

Syntax
x = isvalid(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
A vrworld object is considered valid if its associated virtual world still exists.

x = isvalid(vrworld_object) returns an array that contains a 1 when the elements of
vrworld_object are valid vrworld objects, and returns a 0 when they are not.

You use this method to check whether the vrworld object is still valid. Using a delete or vrclear
command can make a vrworld object invalid.

Version History
Introduced before R2006a

See Also
isvalid | vrnode/isvalid

 vrworld/isvalid

3-153

vrworld/nodes
List nodes available in virtual world

Syntax
nodes(vrworld_object, '-full')

x = nodes(vrworld_object, '-full')

Arguments
vrworld_object A vrworld object representing a virtual world.
'-full' Optional switch to obtain a detailed list of nodes and fields.

Description
If you give an output argument, the method nodes returns a cell array of the names of all available
nodes in the world. If you do not give an output argument, the list of nodes is displayed in the
MATLAB window.

You can use the '-full' switch to obtain a detailed list that contains not only the nodes, but also all
their fields. This switch affects only the output to the MATLAB Command Window.

The virtual world must be open for you to use this method.

Version History
Introduced before R2006a

See Also
vrworld | vrworld/open | vrnode

3 Functions

3-154

vrworld/open
Open virtual world

Syntax
open(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The open method opens the virtual world. When the virtual world is opened for the first time, the
virtual world internal representation is created based on the associated virtual world 3D file.

If the input argument is an array of virtual world handles, all the virtual worlds associated with those
handles are opened.

The virtual world must be open for you to use it. You can close the virtual world with the method
close.

You can call the method open more than once, but you must use an appropriate number of close
calls before the virtual world returns to a closed state.

Examples
Create two vrworld objects by typing

myworld1 = vrworld('vrmount.wrl')
myworld2 = vrworld('vrpend.wrl')

Next, create an array of virtual world handles by typing

myworlds = [myworld1 myworld2];

open(myworlds) opens both of these virtual worlds.

Version History
Introduced before R2006a

See Also
vrworld | vrworld/close | “Open a Virtual World with MATLAB”

 vrworld/open

3-155

vrworld/reload
Reload virtual world from virtual world 3D file

Syntax
reload(vrworld_object)

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The reload method reloads the virtual world from the virtual world 3D file associated with the
vrworld object. If the input argument is an array of virtual world handles, all the virtual worlds
associated with those handles are reloaded. The virtual world must be open for you to use this
method.

reload forces all the clients currently viewing the virtual world to reload it. This is useful when there
are changes to the virtual world 3D file.

Version History
Introduced before R2006a

See Also
vrworld/edit | vrworld/open | vrworld/save | “Open a Virtual World with MATLAB”

3 Functions

3-156

vrworld/save
Write virtual world to virtual world 3D file

Syntax
save(vrworld_object,file)

save(vrworld_object,file,'-export')

save(vrworld_object,file,'-nothumbnail')

save(vrworld_object,file,'-export','-nothumbnail')

Arguments
vrworld_object vrworld object representing a virtual world
file Name of virtual world 3D file, specified as a string. You can

specify a .wrl (VRML), .x3dv (XML encoded) or .x3d (X3D
in classic or XML format) file.

'-export' Saves a complete copy of the virtual world, including all
resources used by the world, located relative to the exported
virtual world location. Resources include virtual world
elements such as textures and resources from the Simulink
3D Editor library. This option supports using a Simulink 3D
Animation virtual world outside of Simulink 3D Animation.

'-nothumbnail' Suppress creating a thumbnail image used for virtual world
preview.

Description
The save method saves the current virtual world to a VRML97 file or X3D file, based on the file
extension (.wrl , .x3dv, or.x3d) that you specify. The virtual world must be open for you to use this
method.

If the virtual world is associated to a VRML file, it can be saved to the VRML or X3D file formats. If
the virtual world is associated to an X3D file, it can be saved only to one of the X3D file formats.

If you specify a VRML file, the resulting file is a VRML97 compliant UTF-8 encoded text file.

Lines are indented using spaces. Line ends are encoded as LF on all platforms to ensure cross-
platform compatibility.

You can use the optional '-export' and '-nothumbnail' arguments either by themselves or
together, in addition to the required vrworld_object and file arguments.

Version History
Introduced before R2006a

 vrworld/save

3-157

See Also
vrworld/edit | vrworld/open | vrworld/reload | “Close and Delete a vrworld Object”

3 Functions

3-158

vrworld/set
Change property values of vrworld object

Syntax
set(vrworld_object, 'property_name', property_value)

Arguments
vrworld_object Name of a vrworld object representing a virtual world.
property_name Name of the property.
property_value New value of the property.

Description
You can change the values of the read/write virtual world properties. The following are properties of
vrworld objects. Names are not case sensitive.

Property Value Description
Clients Scalar Number of clients currently viewing the

virtual world. Read only.
ClientUpdates 'off' | 'on'

Default: 'on'

Client cannot or can update the virtual scene.
Read/write.

Description String.

Default: automatically taken from
the virtual world 3D file property
title

Description of the virtual world as it appears
on the main Web page. Read/write.

Figures Vector of vrfigure objects Vector of handles to Simulink 3D Animation
viewer windows currently viewing the virtual
world. Read only.

FileName String Name of the associated virtual world 3D file.
Read only.

Nodes Vector of vrnode objects Vector of vrnode objects for all named nodes
in the virtual world. Read only.

Open 'off' | 'on'

Default: 'off'

Indicates a closed or open virtual world. Read
only.

Record3D 'off' | 'on'

Default: 'off'

Enables 3-D animation recording. Read/write.

 vrworld/set

3-159

Property Value Description
Record3DFileName String.

Default: '%f_anim_%n.%e'

3D animation file name. The string can
contain tokens that are replaced by the
corresponding information when the
animation recording takes place. For details,
see “File Name Tokens”. Read/write.

Recording 'off' | 'on'

Default: 'off'

Animation recording toggle. This property
acts as the main recording switch. Read/
write.

RecordMode 'manual' | 'scheduled'

Default: 'manual'

Animation recording mode. Read/write.

RecordInterval Vector of two doubles

Default: [0 0]

Start and stop times for scheduled animation
recording. Corresponds to the virtual world
object Time property. Read/write.

RemoteView 'off' | 'on'

Default: 'off'

Remote access flag. If the virtual world is
enabled for remote viewing, it is set to 'on';
otherwise, it is set to 'off'. Read/write.

Time Double Current time in the virtual world. Read/write.
TimeSource 'external' | 'freerun'

Default: 'external'

Source of the time for the virtual world. If set
to 'external', time in the scene is
controlled from the MATLAB interface (by
setting the Time property) or the Simulink
interface (simulation time).

If set to 'freerun', time in the scene
advances independently based on the system
timer. Read/write.

View 'off' | 'on'

Default: 'on'

Indicates an unviewable or viewable virtual
world. Read/write.

Version History
Introduced before R2006a

See Also
vrworld | vrworld/get

3 Functions

3-160

vrworld/view
View virtual world

Syntax
view(vrworld_object)

x = view(vrworld_object)

x = view(vrworld_object,'-internal')

x = view(vrworld_object,'-web')

Arguments
vrworld_object A vrworld object representing a virtual world.

Description
The view method opens the default virtual world viewer on the host computer and loads the virtual
world associated with the vrworld object into the viewer window. You specify the default virtual
world viewer using the DefaultViewer preference. The virtual world must be open for you to use
this method.

x = view(vrworld_object) opens the default virtual world viewer on the host computer and loads
the virtual world associated with the vrworld object into the viewer window. If the Simulink 3D
Animation Viewer is used, view also returns the vrfigure handle of the viewer window. If a Web
browser is used, view returns an empty array of vrfigure handles.

x = view(vrworld_object,'-internal') opens the virtual world in the Simulink 3D Animation
Viewer.

x = view(vrworld_object,'-web') opens the virtual world in the Web browser.

If the virtual world is disabled for viewing (that is, the View property for the associated vrworld
object is set to 'off'), the view method does nothing.

Examples
myworld = vrworld('vrpend.x3d')
open(myworld)
view(myworld)

Version History
Introduced before R2006a

 vrworld/view

3-161

See Also
vrview | vrworld

3 Functions

3-162

sim3d.World
Object used to define virtual reality world in Unreal Engine viewer

Description
Use the sim3d.World object to create and define virtual reality worlds and run the cosimulation
using Unreal Engine.

• Add or remove custom actors to or from the world. Only the actors added to the world object are
displayed.

• Store the virtual reality scene, the root sim3d.Actor object, and the hierarchical structure of all
actors in the scene.

• Optionally control the simulation logic by specifying custom functions. The output function passes
data to the Unreal Engine to change actor properties in the engine.

• Control the cosimulation between MATLAB and the Unreal Engine.
• Define the virtual world global coordinate system.
• Control scene environment settings.
• Control virtual world timing.

Creation

Syntax
world = sim3d.World()
world = sim3d.World('Name',name)
world = sim3d.World('RenderOffScreen',true)
world = sim3d.World('Setup',@setupFcn)
world = sim3d.World('Update',@updateFcn)
world = sim3d.World('Output',@outputFcn)
world = sim3d.World('Release',@releaseFcn)

Description

world = sim3d.World() launches the default Unreal Engine executable in a new window with a
default name.

world = sim3d.World('Name',name) launches the Unreal Engine executable in a new window
with the name specified.

world = sim3d.World('RenderOffScreen',true) runs the cosimulation while running the
Unreal Engine executable in the background.

world = sim3d.World('Setup',@setupFcn) modifies the cosimulation by executing @setupFcn
before setup. This custom function can be used to import additional data which required during
simulation runtime.

 sim3d.World

3-163

world = sim3d.World('Update',@updateFcn) modifies the cosimulation by executing
@updateFcn at each simulation step. This custom function can be used to read data from the Unreal
Engine.

world = sim3d.World('Output',@outputFcn) modifies the cosimulation by executing
@outputFcn at each simulation step. This custom function can be used to send data about the
specified sim3d.Actor object to the Unreal Engine.

world = sim3d.World('Release',@releaseFcn) modifies the cosimulation by executing
@releaseFcn at each simulation step. This function can be used to delete additional data you may
import during setup.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: World = sim3d.World('Name',world1)

Name — Name of world
string

Name of the world, specified as a string.

ExecutablePath — Path to executable file
string

Path to executable file that the world runs, specified as a string.

Map — Path to Unreal Engine map
string

Path to Unreal Engine map that is loaded when the executable file runs, specified as a string.

RenderOffScreen — Option to run simulation in background
0 (false) | 1 (true)

Option to run simulation in the background, specified as either 0(false) or 1(true).

Update — Custom update function
handle to user-defined function

Custom update function that reads data about specified actors from Unreal Engine, specified as the
handle to the user-defined function.

Output — Custom output function
handle to user-defined function

Custom output function that returns information, such as transform and color, for the specified actors
to the Unreal Engine, specified as the handle to the user-defined function. This allows Unreal to
control the simulation.

Setup — Custom setup function
handle to user-defined function

3 Functions

3-164

Custom function that reads to run additional commands during setup, specified as the handle to the
user defined function. This can be used to load data required for simulation.

Release — Custom release function
handle to user-defined function

Custom release function that runs additional commands after simulation ends, specified as the handle
to the user-defined function. This setting can be used to delete additional data imported for the setup.

Properties
'Name' — Name of world
string

Name of the world, specified as a string.

Actors — All actors in world
structure

All actors in the world, specified as a structure whose fields are the names of the actors.

UserData — Data specified by user
structure

Data specified by user that may be required during simulation runtime, specified as a structure.

You can use UserData to store the data needed by the Update, Output, Setup, and Release
custom functions. UserData ensures that the same data is accessible to all these functions.

Viewports — Perspective of main camera
empty structure (default) | structure

Perspective of the main camera, defined as a structure containing a single field, Main. Main contains
a sim3d.sensors.MainCamera object with these properties:

• Parent — Parent of actor object
• Children — Children of actor object
• ParentWorld — Handle to parent world
• SensorIdentifier — Unique ID of the main camera, with data type uint32
• Translation — Translation of the main camera relative to the parent vehicle, in meters
• Rotation — Rotation of the sensor relative to the parent vehicle, in radians

HitActors — Event container
empty array (default) | array

Event container for the handles for actors hit at a time step, specified as an array. After each time
step, the event container resets to empty.

BeginOverlappedActors — Event container
empty array (default) | array

Event container for the handles for actors that start overlapping at a time step, specified as an array.
After each time step, the event container resets to empty.

 sim3d.World

3-165

EndOverlappedActors — Event container
empty array (default) | array

Event container for the handles for actors that end overlapping at a time step, specified as an array.
After each time step, the event container resets to empty.

ClickedActors — Event container
empty array (default) | array

Event container for the handles for actors that are interactively clicked at a time step, specified as an
array. After each time step, the event container resets to empty.

Object Functions
createViewport Create viewport for world
add Add actor to virtual reality world
run Run cosimulation in virtual reality world
remove Remove actor added to world or remove all actors in world

Examples

Create World and Actor

This example shows how to use the sim3d.World and sim3d.Actor objects to create an actor in a
world scene to display in the Simulation 3D Viewer window. This process does not build an actor
object appearance, preventing the Simulation 3D Viewer from rendering a visualization of the actor
object. For an example building an appearance for an actor, see “Build Actor from Mesh Data and
Apply Texture”.

Create World

Create a world scene.

world = sim3d.World();

Create Actor

Add an actor to the world.

add(world,sim3d.Actor());

Run Simulation

Run a simulation set for 10 seconds with a sample time of 0.02 seconds.

run(world,0.02,10)

3 Functions

3-166

Delete World

Delete the world object.

delete(world);

Version History
Introduced in R2022b

R2023a: Event Attributes

Use sim3d.World object properties to read event information, including:

• HitActors: Actors hit at a time step.
• BeginOverlappedActors: Actors that starts overlapping at a time step.
• EndOverlappedActors: Actors that ends overlapping at a time step.
• ClickedActors: Actors that are interactively clicked at a time step.

See Also
Classes
sim3d.Actor | sim3d.sensors.IdealCamera | sim3d.sensors.MainCamera

Blocks
Simulation 3D Actor Transform Get | Simulation 3D Actor Transform Set | Simulation 3D Camera Get
| Simulation 3D Scene Configuration

 sim3d.World

3-167

takeSnapshot
Take snapshot of selected properties

Syntax
takeSnapshot(actor)
takeSnapshot(actor,Name)
takeSnapshot(actor,Name,Properties)
takeSnapshot(actor)
takeSnapshot(actor,Name)
takeSnapshot(actor,Name,Properties)
takeSnapshot(actor,Name,Properties,IncludeChildren)

Description
takeSnapshot(actor) takes a snapshot of the actor specified by actor.

takeSnapshot(actor,Name) takes a snapshot of the actor called Name.

takeSnapshot(actor,Name,Properties) takes a snapshot of the actor called Name by storing
the values of the properties specified by Properties.

takeSnapshot(actor) takes a snapshot of actor.

takeSnapshot(actor,Name) takes a snapshot of actor called Name.

takeSnapshot(actor,Name,Properties) takes a snapshot of the actor called Name by storing
the values of the properties contained in Properties.

takeSnapshot(actor,Name,Properties,IncludeChildren) takes a snapshot of actor by
storing the values of Properties mentioned.

Input Arguments
actor — Actor class whose property is returned
sim3d.Actor object

Actor class whose property is returned, specified as a sim3d.Actor object.

Name — Name of snapshot
string | character array

Name of snapshot, specified as a string or character array. This name can be used later to retrieve
the snapshot. If no name is specified, a default name is generated.

Properties — Names of properties whose values are returned
{'Translation', 'Rotation'} (default) | cell array of sim3d.Actor object properties

Names of properties whose values are returned from actor, specified a cell array of Properties of the
sim3d.Actor object properties.

3 Functions

3-168

Properties should be a cell array of strings with the list of all properties to be included in the
snapshot.

IncludeChildren — Whether to include children of actor
true or 1 (default) | false or 0

Whether to include children of in search, specified as either true (1) or false (0).

• true – Include all children.
• false – Do not include children.

Version History
Introduced in R2022b

See Also
copy | findBy | propagate | gather | restoreSnapshot

 takeSnapshot

3-169

restoreSnapshot
Restore actor to state of properties saved in specified snapshot

Syntax
restoreSnapshot(actor)
restoreSnapshot(actor,SnapID)

Description
restoreSnapshot(actor) restores properties of the actor specified by actor to the values stored
in the snapshot. If IncludeChildren is set to true while taking the snapshot, all the properties of
the children of the actor restore to their original state.

restoreSnapshot(actor,SnapID) additionally specifies the name or time of the snapshot
specified by SnapID.

Input Arguments
actor — Actor class whose properties are restored
sim3d.Actor object

Actor class whose properties are restored, specified as a sim3d.Actor object.

SnapID — Name of snapshot
character array

Name of snapshot being restored, specified as a character array. If SnapID is empty or incorrect or
non existing snapshot ID is provided, it will result in an error and no snapshot will be restored.

Version History
Introduced in R2022b

See Also
copy | findBy | propagate | gather | takeSnapshot

3 Functions

3-170

createMesh
Create new mesh with specified values

Syntax
createMesh(actor,vertices,normals,faces)
createMesh(___ ,tcoords,vcolor)

Description
createMesh(actor,vertices,normals,faces) creates a mesh defined by vertices, normals
and faces.

createMesh(___ ,tcoords,vcolor) creates a mesh additionally defined by the texture
coordinates tcoords and the vertex colors vcolor.

Examples

Build Actor from Mesh Data and Apply Texture

This example shows how to build an actor from mesh data using the createMesh function and how
to use the texture property of the sim3d.Actor object. First, you create a world scene and an actor
object. Next, you build the appearance of the actor from a mesh and apply a texture. Then, you add
the actor to the world, transform the actor, and set a view in the scene. Finally, you view the actor in
the Simulation 3D Viewer window.

A mesh is a 3D build of a model consisting of polygons and is defined by vertices, normals, and faces.
If you require detailed control over the geometry of an actor, create an actor from a mesh. This
example uses sphere geometry for the mesh data to build the actor.

Build Actor from Mesh in World

Create a world scene.

world = sim3d.World();

Instantiate an actor object named sphere. Use the sim3d.utils.Geometry function to create a
sphere. Obtain the sphere vertices V, normals N, faces F, texture coordinates T, and vertex colors C.

ActObj = sim3d.Actor('ActorName', 'sphere');
[V, N, F, T, C] = sim3d.utils.Geometry.sphere([0.5 0.5 0.5]);

Create a mesh using the actor object and sphere geometry. Set a texture provided by the image file.
Add the actor object to the world.

createMesh(ActObj, V, N, F, T, C);
ActObj.Texture = fullfile(pwd,"image.png");
add(world,ActObj);

 createMesh

3-171

Set Actor Transformation

Use the actor object translation, rotation, and scale properties to orient the actor relative to the
world origin.

ActObj.Translation = [0 0 0];
ActObj.Rotation = [0, 0, 0];
ActObj.Scale = [1, 1, 1];

Set Viewer Window Point of View

If you do not create a viewport, then the point of view is set to 0, 0 ,0, and you can use the arrow keys
and pointer to navigate in the Simulation 3D Viewer window.

For this example, use the createViewport function to create a viewport with a single field, Main,
that contains a sim3d.sensors.MainCamera object.

viewport = createViewport(world);
viewport.Translation = [-3, 0, 0];

Run Animation

Run a simulation set for 10 seconds with a sample time of 0.02 seconds.

run(world,0.02,10)

3 Functions

3-172

Delete World

Delete the world object.

delete(world)

Input Arguments
vertices — Vertex positions
real positive (N,3) vector

Vertex positions, specified as a real positive (N,3) vector. This vector includes all vertex positions to
be used for the mesh geometry.
Example: vertices = reshape(1: 6, 2, 3)
Data Types: double

actor — Actor class where mesh is being created
sim3d.Actor object

Actor class where mesh is created, specified as a sim3d.Actor object.

faces — Faces of actor shape
real positive (N,3) vector

Faces of actor shape, specified as a real positive (N,3) vector. This vector defines how each triangle of
the mesh is drawn. Length must be a multiple of 3.
Example: faces = [1: 3; 4 : 6]
Data Types: double

normals — Normal vectors
real positive (N,3) vector

Normal vectors for each vertex, specified as a real positive (N,3) vector. This vector must be the same
length as vertices vector.
Example: normals = reshape(7: 12, 2, 3)
Data Types: double

vcolor — Vertex colors
real positive (N,3) vector

Vertex colors, specified a real positive (N,3) vector. This vector must be the same length as vertices
vector.
Example: vertexcolor = reshape(25 : 33, 3, 3)
Data Types: double

tcoords — Texture coordinates
real positive (N,2) vector

Texture coordinates of each vertex, specified a real positive (N,2) vector. This must be the same
length as vertices array.

 createMesh

3-173

Example: texturecoord = reshape(21 : 24, 2, 2)
Data Types: double

Version History
Introduced in R2022b

See Also
copy | findBy | propagate | gather | takeSnapshot | restoreSnapshot

3 Functions

3-174

addMesh
Add mesh on top of current mesh

Syntax
addMesh(actor,vertices,normals,faces)
addMesh(___ ,tcoords,vcolor)

Description
addMesh(actor,vertices,normals,faces) adds a partial mesh defined by vertices, normals,
and faces. The resulting geometric mesh creates a single solid body.

addMesh(___ ,tcoords,vcolor) adds a mesh additionally defined by the texture coordinates
tcoords and the vertex colors vcolor.

Input Arguments
vertices — Vertex positions
real positive (N,3) vector

Vertex positions, specified as a real positive (N,3) vector. This vector includes all vertex positions to
be used for the mesh geometry.
Example: vertices = reshape(1: 6, 2, 3)
Data Types: double

actor — Actor class where property is being added
sim3d.Actor object

Actor class where mesh is being added, specified as a sim3d.Actor object.

faces — Faces of actor shape
real positive (N,3) vector

Faces of actor shape, specified as a real positive (N,3) vector. This vector defines how each triangle of
the mesh is drawn. Length must be a multiple of 3.
Example: faces = [1: 3; 4 : 6]
Data Types: double

normals — Normal vectors
real positive (N,3) vector

Normal vectors for each vertex, specified as a real positive (N,3) vector. This vector must be the same
length as vertices vector.
Example: normals = reshape(7: 12, 2, 3)
Data Types: double

 addMesh

3-175

vcolor — Vertex colors
real positive (N,3) vector

Vertex colors, specified a real positive (N,3) vector. This vector must be the same length as vertices
vector.
Example: vertexcolor = reshape(25 : 33, 3, 3)
Data Types: double

tcoords — Texture coordinates
real positive (N,2) vector

Texture coordinates of each vertex, specified a real positive (N,2) vector. This must be the same
length as vertices array.
Example: texturecoord = reshape(21 : 24, 2, 2)
Data Types: double

Version History
Introduced in R2022b

3 Functions

3-176

sim3d.Actor
Object used to define actors in the Unreal Engine viewer

Description
Use the sim3d.Actor object for user-defined Unreal Engine C++ or blueprint actors.

Creation

Syntax
actor = sim3d.Actor
actor = sim3d.Actor(___ ,Name,Value)

Description

actor = sim3d.Actor creates a default actor object that represents all items in the virtual reality
world.

actor = sim3d.Actor(___ ,Name,Value) specifies additional options using one or more name-
value arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: actor1 = sim3d.Actor('ActorName','vehicle1','Translation', [3, 4, 3],
'Rotation', [], 'Scale',[1 2 1], 'OnHit', @hitcallback)

ActorName — Name of actor
autogenerated name (default) | character array | string

Name of actor, specified as a character array or string. If an actor name is not specified, then the
actor is assigned an autogenerated name.

Note If you specify the same name as an actor that already exists, then the actor name you specify is
appended with a unique identifier to differentiate it.

Translation — Relative translation
[0,0,0] (default) | real 1-by-3 vector

Relative translation (x,y,z) of the actor object to its parent actor, specified as a real 1-by-3 vector, in
meters. Use this argument to set the Translation property of the sim3d.Actor object.

 sim3d.Actor

3-177

Data Types: double

Rotation — Relative rotation
[0,0,0] (default) | real 1-by-3 vector

Relative rotation (roll, pitch, yaw) of the actor object to its parent actor, specified as a real 1-by-3
vector, in radians. Use this argument to set the Rotation property of the sim3d.Actor object.
Data Types: double

Scale — Relative scaling
[1,1,1] (default) | real 1-by-3 vector

Relative scaling in x, y and z coordinates, specified as a real 1-by-3 vector. Use this name value
argument to set the Scale property of the sim3d.Actor object.
Data Types: double

ActorClassId — Semantic segmentation map of object class identifiers
0 (default) | m-by-n array

Semantic segmentation map of object class identifiers, specified as an array.

OnHit — Event callback function
function handle

Use the @hitcallback function and pass an input argument to store data in a structure for a
sim3d.Actor hit event.
Example: function hitcallback(EventData)

OnBeginOverlap — Event callback function
function handle

Use the @beginoverlapcallback function and pass an input argument to store data in a structure
for a sim3d.Actor begin overlap event.
Example: function beginoverlapcallback(EventData)

OnEndOverlap — Event callback function
function handle

Use the @endoverlapcallback function and pass an input argument to store data in a structure for
a sim3d.Actor end overlap event.
Example: function endoverlapcallback(EventData)

OnClick — Event callback function
function handle

Use the @clickcallback function and pass an input argument to store data in a structure for a
sim3d.Actor click event.
Example: function clickcallback(EventData)

In addition to these name-value arguments, you also can specify any of the properties on this page as
name-value arguments.

3 Functions

3-178

Output Arguments

actor — Actor object
sim3d.Actor object

Actor object, returned as a sim3d.Actor object. A unique identifier and unique name is assigned to
the actor. You can change the actor name, but the unique identifier is associated with the actor until
the actor is deleted. The virtual reality world is composed of a hierarchical structure of actors.

Properties
Base Attributes

UserData — Structure to hold actor data
structure

Structure to hold actor data, specified as a structure. You can update and maintain this data and use
it to update the fields of the structure during simulation or in the setup method.

Parent — Parent of actor
handle to parent sim3d.actor object

Parent of actor, specified as a handle to the parent sim3d.Actor object. You can set this property
using the Parent argument.

Children — Children of actor
handle to children sim3d.actor object

This property is read-only.

Children of actor, specified as a handle to the sim3d.Actor object.

ParentWorld — Parent world method handle
handle to parent sim3d.World object

This property is read-only.

Parent world method handle, specified as a handle to the parent sim3d.Actor object.

Translation — Cartesian coordinates for actor position
[0,0,0] (default) | real 1-by-3 vector

Cartesian coordinates for actor position in the Unreal Editor scene, specified as a real 1-by-3 vector.
You can set this property using the Translation argument.

Rotation — Rotation of actor
[0,0,0] (default) | real 1-by-3 vector

Rotation of actor in the Unreal Editor scene, specified as a three element vector. You can set this
property using the Rotation name value argument.

Scale — Scale of actor
[1,1,1] (default) | real 1-by-3 vector

 sim3d.Actor

3-179

Scale of actor used for scaling in each of three directions in the Unreal Editor scene, specified as a
real 1-by-3 vector. You can set this property using the Scale argument.

Mobility — Type of actor mobility
'sim3d.utils.MobilityTypes.Movable' (default) | 'sim3d.utils.MobilityTypes.Static'

Type of actor mobility to respond to physics and/or move the actor during simulation, specified as
'sim3d.utils.MobilityTypes.Movable' or 'sim3d.utils.MobilityTypes.Static'.
Data Types: string

Mesh Attributes

Vertices — Vertices of mesh geometry
empty array (default) | real n-by-3 vector

Vertices of the mesh geometry, specified as a real n-by-3 vector, where n is the number of vertices.
Example: actor.Vertices = [1, 2, 3; 43, 54, 65]
Data Types: double

Faces — Vertices of each triangle
empty array (default) | real n-by-3 vector

Vertices of each triangle, specified as a real n-by-3 vector, where n is the number of vertices. You can
use this property to define how each triangle of the mesh is drawn.
Example: actor.Faces = [1, 2, 3; 4, 5, 6]
Data Types: double

Normals — Normals of each vertex
empty array (default) | real n-by-3 vector

Normals of each vertex, specified as a real n-by-3 vector, where n is the number of vertices. Normals
must be of the same length as Vertices.
Example: actor.Normals = [1, 2, 3; 43, 54, 65]
Data Types: double

TextureCoordinates — Texture coordinates
empty array (default) | real n-by-2 vector

Texture coordinates for each vertex, specified as a real n-by-2 vector, where n is the number of
vertices. This argument is optional, and if specified, must be the same length as Vertices.
Example: actor.TextureCoordinates = [1 2;3 4]

VertexColors — Vertex colors
empty array (default) | real n-by-3 vector

Vertex colors, specified as a real n-by-3 vector, where n is the number of vertices. This argument is
optional, and if specified, must be the same length as Vertices.
Example: actor.VertexColors = [1, 2,3; 4, 5, 6]

3 Functions

3-180

Material Attributes

Color — Base color of actor
[1,1,1] (default) | real 1-by-3 vector

Base color of actor, specified as a real 1-by-3 vector. Color consists of a vector of color RGB
components [red green blue]. Values greater than 1 cause glowing and can be used for various
indicators. If the sim3d.Actor object has a texture, the TextureMapping.Blend coefficient can be
used to control how it blends with the base color.
Example: actor.Color = [0.3 0.27 0.9]

Transparency — Transparency of actor
0 (default) | real positive number in the range (0,1)

Transparency of actor, specified as a real positive number in the range (0,1), where 0 indicates a
nontransparent object and 1 indicates a completely transparent object.
Example: actor.Transparency = 0.8
Data Types: double

Shininess — Shininess of actor
0.7 (default) | real positive number in the range (0,1)

Shininess of actor, specified as a real positive number in the range (0,1), where 0 indicates a nonshiny
object and 1 indicates a completely shiny object.
Example: actor.Shininess = 0.3
Data Types: double

Metallic — Metallic look of actor
0.7 (default) | real positive number in the range (0,1)

Metallic look of actor, specified as a real positive number in the range (0,1), where 0 indicates a
plastic surface and 1 indicates a metallic surface.
Example: actor.Metallic = 0.1
Data Types: double

Flat — Flat shading factor of actor
0 (default) | real positive number in the range (0,1)

Flat shading factor of actor, specified as a real positive number in the range (0,1), where 0 indicates a
smooth surface and 1 indicates a faceted surface.
Example: actor.Flat = 0.7
Data Types: double

Tessellation — Tessellation factor of actor
0 (default) | real positive integer in the range (0,8)

Tessellation factor of actor, specified as a real positive integer in the range (0,8). Use this property to
specify the coefficient of automatic geometry refinement. This property can be useful when texture
displacement mapping is used.

 sim3d.Actor

3-181

Example: actor.Tessellation = 5

VertexBlend — Color blending coefficient of vertices
0 (default) | real positive number in the range (0,1)

Color blending coefficient of vertices, specified as a real positive number in the range (0,1). This
value can be larger to achieve the effect of glowing colors.
Example: actor.VertexBlend = 0.5

TextureTransform — Texture transformations applied to actor texture
real positive vector

Texture transformations applied to actor texture, specified as a real positive scalar. Use
TextureTransform to define texture position, velocity, scale, and angle.

Transformation Properties

Property Detail Value Value Example
Position Use this property to set the

position of the texture. You
can use Position to move
the texture along U and V
coordinates.

• Value – Real positive
(1,2) vector

• Default Value – (0,0)
• Data Type – double

actor.TextureTrans
form.Position =
[2, 3]

Velocity Use this property to set the
velocity of the texture
movement. velocity is
expressed as a change of U
and V coordinates per
second of simulation time.
The animated surface has
no effect on physical
interactions.

• Value – Real positive
(1,2) vector

• Default Value – (0,0)
• Data Type – double

actor.TextureTrans
form.Velocity =
[2, 3]

Scale Use this property to set the
relative texture scale. If the
texture is smaller than the
surface to be covered, the
scale repeats automatically
in all directions. Negative
values can be used to flip
the texture in corresponding
coordinate.

• Value – Real positive
(1,2) vector

• Default Value – (0,0)
• Data Type – double

actor.TextureTrans
form.Scale = [2,
2]

TextureMapping — Texture mapping parameters applied to actor texture
real positive vector

Texture mapping parameters applied to actor texture, specified as a real positive vector. Use
TextureMapping to define texture blend, displacement, bump factor, and roughness.

3 Functions

3-182

Mapping Properties

Property Detail Value Value Example
Blend Use this property to set the

blend ratio of the texture.

You can use Blend to set
the ratio of texture mixing
with the base color of the
surface using linear
interpolation.

To create an effect of
glowing texture, use a black
base color ([0 0 0]) and
blend values greater than 1.

You can set the value
independently for each
color channel ([red green
blue]).

• Value – Real positive
(1,3) vector

• Default Value –
(0,0,0)

• Data Type – double

actor.TextureMappi
ng.Blend = [1 1
0.5]

Displacement Use this property to set the
displacement of the texture.

You can use Displacement
to move the vertex of a
geometric mesh in the
direction of the normal
depending on the color of
the texture at that location.
This deformation is
only visual and does not
affect physical interactions.

You can set the value
independently for each
color channel ([red green
blue]) and its range is
unlimited.

• Value – Real positive
(1,3) vector

• Default Value –
(0,0,0)

• Data Type – double

actor.TextureMappi
ng.Displacement
= [1 2 5]

 sim3d.Actor

3-183

Property Detail Value Value Example
Bumps Use this property to set the

bump factor of the texture.

You can use Bump to create
the effect of a bumpy
surface (such as a stone
wall) by making small
manipulations with normals
and lighting.

You can set the value
independently for each
color channel ([red green
blue]) and its range is
unlimited.

• Value – Real positive
(1,3) vector

• Default Value –
(0,0,0)

• Data Type – double

actor.TextureMappi
ng.Bumps = [10 10
0.5]

Roughness Use this property to set the
roughness factor of the
texture.

You can use Roughness to
locally manipulate the
global surface shininess
specified by the Shininess
property.

You can set the value
independently for each
color channel ([red green
blue]) and its range is
unlimited.

• Value – Real positive
(1,3) vector

• Default Value –
(0,0,0)

• Data Type – double

actor.TextureMappi
ng.Roughness = [1
1 0.5]

Texture — Source file for actor shape
'' (default) | character array

Source file for actor shape, specified as a character array. The supported file types are JPEG, PNG,
and BMP. The filepath should be absolute.

Note For BMP files, only 8-bit files are supported.

Example: actor.Texture = "file.jpg"

Physical Attributes

Shadows — Actor shadows
0 or false (default) | 1 or true

Actor shadows, specified as 0 (false) if the actor does not cast shadows or 1 (true) if it does.

LinearVelocity — Linear velocity of actor
(0,0,0) (default) | real positive vector

3 Functions

3-184

Linear velocity of actor in local coordinates, specified as a real positive vector, in meters per second.
Example: actor.LinearVelocity = [1 1 1]

Dependencies

Mobility should be set to 'sim3d.utils.MobilityTypes.Movable' for velocities to work.
Otherwise the actor will not move, and you will see a warning.

AngularVelocity — Angular velocity of actor
(0,0,0) (default) | real positive vector

Angular velocity of actor in local coordinates, specified as a real positive vector, in radians per
second.
Example: actor.AngularVelocity = [2 2 2]

Dependencies

Mobility should be set to 'sim3d.utils.MobilityTypes.Movable' for velocities to work.
Otherwise the actor will not move, and you will see a warning.

Mass — Mass of actor
0 (default) | real positive scalar

Mass of actor, specified as a real positive scalar, in kilograms.
Example: actor.Mass = 12

CenterOfMass — Center of mass of actor
(0,0,0) (default) | real positive vector

Center of mass of sim3d.Actor object, specified as a real positive vector. Use this property to shift
the center of gravity from the origin of the local coordinate system.
Example: actor.CenterOfMass = [1 0 1]

Gravity — Application of gravity to actor
0 or false (default) | 1 or true

Application of gravity to actor, specified as 0 (false) if no gravity is applied or 1 (true) if gravity is
applied.
Example: actor.Gravity = false

Dependencies

• This property works when:

• Physics property is set to 1 or true.
• PreciseContact property is set to 0 or false.

• Mobility should be set to 'sim3d.utils.MobilityTypes.Movable' for the actor to
experience the effects of gravity. Otherwise the actor will not move, and you will see a warning.

Physics — Reaction of actor to physical forces
0 or false (default) | 1 or true

Reaction of actor to physical forces such as gravity and collision, specified as 0 (false) or 1 (true).

 sim3d.Actor

3-185

If Physics is enabled, the actor moves independently of its parent actor object but together with its
children, unless the children also have Physics enabled.
Example: actor.Physics = true

Dependencies

This property works when PreciseContact property is set to 0 or false.

Collisions — Object collision
0 or false (default) | 1 or true

Object collision, specified as 0 (false) for no collision or 1 (true) if objects will collide.
Example: actor.Collisions = true

PreciseContacts — Precise contacts
0 or false (default) | 1 or true

Precise contacts during collisions, specified as 0 (false) or 1 (true). Setting value to true allows
Unreal Engine to precisely render collisions.
Example: actor.PreciseContacts = true

Dependencies

Setting PreciseContacts property to true for an actor disables Physics and Gravity.

LocationLocked — Stationary translational motion
0 or false (default) | 1 or true

Stationary translational motion, specified as either 0 (false) or 1 (true). If this property is enabled,
the actor is fixed in place. If the actor has defined a nonzero linear velocity, it interacts with other
objects as if it were moving itself. You can use this property to model belt conveyors.
Example: actor.LocationLocked = true

RotationLocked — Stationary rotational motion
0 or false (default) | 1 or true

Stationary rotational motion, specified as either 0 (false) or 1 (true). If this property is enabled, the
sim3d.Actor object is fixed in place. If the actor has defined a nonzero angular velocity, it interacts
with other objects as if it were moving itself. You can use this property to model circular conveyors
(carousels).
Example: actor.RotationLocked = true

Friction — Dynamic friction
0.7 (default) | scalar

Dynamic friction, dimensionless, specified as a scalar.
Example: actor.Friction = 0.7

Restitution — Coefficient of restitution
0.3 (default) | scalar

Coefficient of restitution, dimensionless, specified as a scalar.

3 Functions

3-186

Example: actor.Restitution = 0.3

Event Attributes

Events — Option to report actor events
1 or true (default) | 0 or false

Option to report actor events, specified as 0 (false) or 1 (true). This table provides the required
events and collision property settings to report events.

Event Report Event
Description

Actor Events Property Actor Collision
Property

Hit Actor 1 collides with
Actor 2

Actor 1 – true

Actor 2 – true or false

Actor 1 – true

Actor 2 – true
BeginOverlap Actor 1 starts to

overlap with Actor 2
Actor 1 – true

Actor 2 – true or false

Actor 1 – false

Actor 2 – false
EndOverlap Actor 1 stops

overlapping with Actor
2

Actor 1 – true

Actor 2 – true or false

Actor 1 – false

Actor 2 – false
ClickEvent You click Actor 1 Actor 1 – true NA

Example: actor.Events = true

HitEvent — Hit event
0 or false | 1 or true

This property is read-only.

Hit event for sim3d.Actor object, specified as 0 (false) or 1 (true).

HitSelfID — Hit sim3d.Actor object identifier
real positive integer

This property is read-only.

Hit sim3d.Actor object identifier, specified as a real positive integer.

HitOtherID — Identifier of actor that collides with sim3d.Actor object
real positive integer

This property is read-only.

Identifier of actor that collides with the sim3d.Actor object, specified as a real positive integer.

HitLocation — Hit event location
[0,0,0] (default) | real 1-by-3 vector

This property is read-only.

Hit event location in the Unreal Editor scene, specified as a real 1-by-3 vector.
Data Types: double

 sim3d.Actor

3-187

HitOtherActorName — Name of actor that collides with sim3d.Actor object
character array | string

This property is read-only.

Name of actor that collides with the sim3d.Actor object, specified as a character array or string.

BeginOverlapEvent — Overlap begin event
0 or false | 1 or true

This property is read-only.

Overlap begin event for sim3d.Actor object, specified as 0 (false) or 1 (true).

BeginOverlapSelfID — Identifier of overlapped sim3d.Actor object
real positive integer

This property is read-only.

Identifier of the overlapped sim3d.Actor object, specified as a real positive integer.

BeginOverlapOtherID — Identifier of actor that overlaps with sim3d.Actor object
real positive integer

This property is read-only.

Identifier of the actor that overlaps with the sim3d.Actor object, specified as a real positive integer.

BeginOverlapOtherActorName — Name of actor that overlaps with sim3d.Actor object
character array | string

This property is read-only.

Name of actor that overlaps with the sim3d.Actor object, specified as a character array or string.

EndOverlapEvent — Overlap end event
0 or false | 1 or true

This property is read-only.

Overlap end event for sim3d.Actor object, specified as 0 (false) or 1 (true).

EndOverlapSelfID — Identifier of sim3d.Actor object ending overlap
real positive integer

This property is read-only.

Identifier of the sim3d.Actor object that is ending overlap, specified as a real positive integer.

EndOverlapOtherID — Identifier of actor that ends overlap with sim3d.Actor object
real positive integer

This property is read-only.

Identifier of the actor that ends overlap with the sim3d.Actor object, specified as a real positive
integer.

3 Functions

3-188

EndOverlapOtherActorName — Name of actor that ends overlap with sim3d.Actor object
character array | string

This property is read-only.

Name of actor that ends overlap with the sim3d.Actor object, specified as a character array or
string.

ClickEvent — Click event
0 or false | 1 or true

This property is read-only.

Click event for sim3d.Actor object, specified as 0 (false) or 1 (true).

ClickActorID — Identifier of sim3d.Actor object that is clicked
real positive integer

This property is read-only.

Identifier of the sim3d.Actor object that is clicked, specified as a real positive integer.

ClickLocation — Cartesian coordinates of the click event location
[0,0,0] (default) | real 1-by-3 vector

This property is read-only.

Cartesian coordinates of the click event location in the Unreal Editor scene, specified as a real 1-by-3
vector.
Data Types: double

ClickActorName — Name of clicked actor
character array | string

This property is read-only.

Name of clicked actor, specified as a character array or string.

Object Functions
copy Copy all properties from another actor
findBy Find all actors that match specified criteria
propagate Propagate value of selected property to actor and its children
gather Return values of selected property from all objects in selected branch
takeSnapshot Take snapshot of selected properties
restoreSnapshot Restore actor to state of properties saved in specified snapshot
createMesh Create new mesh with specified values
addMesh Add mesh on top of current mesh
load Load or import 3D file
save Save actor and children to a MAT file
createShape Create geometry for basic primitives

Examples

 sim3d.Actor

3-189

Create World and Actor

This example shows how to use the sim3d.World and sim3d.Actor objects to create an actor in a
world scene to display in the Simulation 3D Viewer window. This process does not build an actor
object appearance, preventing the Simulation 3D Viewer from rendering a visualization of the actor
object. For an example building an appearance for an actor, see “Build Actor from Mesh Data and
Apply Texture”.

Create World

Create a world scene.

world = sim3d.World();

Create Actor

Add an actor to the world.

add(world,sim3d.Actor());

Run Simulation

Run a simulation set for 10 seconds with a sample time of 0.02 seconds.

run(world,0.02,10)

Delete World

Delete the world object.

delete(world);

Version History
Introduced in R2022b

R2023a: Communicate Unreal Engine Events

3 Functions

3-190

Use sim3d.Actor object properties to communicate events in the Unreal Engine simulation 3D
environment, including when:

• You click an actor.
• An actor collides or overlaps with another actor.
• You initialize an event callback for an actor.

R2023a: Precise Contacts

Use the PreciseContacts property to allow Unreal Engine to precisely render collisions.

R2023a: Physical properties

The sim3d.Actor object has these new physical properties:

• Friction
• Restitution

See Also
sim3d.World | sim3d.sensors.IdealCamera | sim3d.sensors.MainCamera | Simulation 3D
Actor

 sim3d.Actor

3-191

copy
Copy all properties from another actor

Syntax
copy(self,other)
copy(self,other,copyChildren)
copy(self,other,copyChildren,useSourcePosition)

Description
copy(self,other) copies the contents of the actor specified by other to the actor object self.

copy(self,other,copyChildren) additionally copies the children of the actor.

copy(self,other,copyChildren,useSourcePosition) also provides an option for the source
actor to retain its location.

Input Arguments
self — Actor object
sim3d.Actor object

Actor object, specified as a sim3d.Actor object, which is the destination actor to which a copy is
made.
Example: copy(actor1,actor2)

other — Actor object
sim3d.Actor object

Actor object, specified as a sim3d.Actor object. This object is the source actor from which
properties are copied.

copyChildren — Option to copy children
1 or true (default) | 0 or false

Option to copy children from other to self, specified as either 1 (true) or 0 (false). If true, the
copy function copies all children and their properties from the specified source. If false, the
function does not copy these properties.
Data Types: logical

useSourcePosition — Option for source actor to retain its location
1 or true (default) | 0 or false

Option for source actor to retain its location, specified as either 1 (true) or 0 (false). When true,
the copy function leaves the position of self (translation, rotation) as-is.
Example: copy(actor1, actor2, false, true)
Data Types: logical

3 Functions

3-192

Version History
Introduced in R2022b

See Also
findBy | propagate | gather | takeSnapshot | restoreSnapshot

 copy

3-193

save
Save actor and children to a MAT file

Syntax
save(actor,dest)

Description
save(actor,dest) saves the actor class specified by actor and its children to the dest MAT file.

Input Arguments
actor — Actor class that is saved
sim3d.Actor object

Actor class that is saved, specified as a sim3d.Actor object.

dest — Name of destination where actor is saved
character array

Name of destination where actor is saved, specified as a character array. The destination can be a file
path or file name.

Version History
Introduced in R2022b

See Also
copy | findBy | propagate | gather | takeSnapshot | restoreSnapshot

3 Functions

3-194

propagate
Propagate value of selected property to actor and its children

Syntax
propagate(actor,PropertyName,PropertyValue)
propagate(actor,PropertyName,PropertyValue,Condition)

Description
propagate(actor,PropertyName,PropertyValue) propagates the property value specified by
PropertyValue to the PropertyName property of actor.

propagate(actor,PropertyName,PropertyValue,Condition) restricts propagation according
to the value of Condition.

Input Arguments
actor — Actor class where property is propagated
sim3d.Actor object

Actor class where property is propagated, specified as a sim3d.Actor object.

PropertyName — Name of property propagated
sim3d.Actor object property

Name of property being propagated to actor, specified as one of the properties of the sim3d.Actor
object.

PropertyValue — Value of property propagated
sim3d.Actor object property

Value of property propagated to actor, specified as one of the properties of the sim3d.Actor
object.

Condition — Where to propagate property value
'all' | 'children' | 'selected'

Where to propagate property value, specified as 'all', 'children', or 'selected', where

• 'all' – Propagate value to actor and all its children.
• 'children' – Propagate value only to children but not to actor itself.
• 'selected' – Propagate value only to selected sim3d.Actor objects.

Version History
Introduced in R2022b

 propagate

3-195

See Also
copy | findBy | gather | takeSnapshot | restoreSnapshot

3 Functions

3-196

gather
Return values of selected property from all objects in selected branch

Syntax
res = gather(actor,PropertyName)
res = gather(actor,PropertyName,IncludeChildren)

Description
res = gather(actor,PropertyName) returns a cell array with objects found in the actor class
specified by actor and current property values for PropertyName.

res = gather(actor,PropertyName,IncludeChildren) specifies whether the children of
actor should be searched too.

Input Arguments
actor — Actor class whose property is returned
sim3d.Actor object

Actor class whose property is returned, specified as a sim3d.Actor object.

PropertyName — Name of property returned
sim3d.Actor property

Name of property returned from actor, specified as one of the Properties of the sim3d.Actor
object.

IncludeChildren — Whether to include children of actor
true or 1 (default) | false or 0

Whether to include children of in search, specified as either true (1) or false (0).

• true – Include all children.
• false – Do not include children.

Output Arguments
res — Table of results
cell array

Table of results, returned as a cell array. The first column contains references to found actors. The
second column contains the current value of the property specified by PropertyName.

Version History
Introduced in R2022b

 gather

3-197

See Also
copy | propagate | findBy | takeSnapshot | restoreSnapshot

3 Functions

3-198

createShape
Create geometry for basic primitives

Syntax
createShape(actor,type)
createShape(actor,type,inputspec)

Description
createShape(actor,type) creates the actor actor in the shape defined by type.

createShape(actor,type,inputspec) provides additional details specified by inputspec for
the shape specified by type.

Examples

Build Actor from 3D Graphic Primitives

This example shows how to build an actor from a 3D graphic primitive using the createShape
function. First, you create a world scene and an actor object. Next, you build the appearance of the
actor from a 3D graphic. Then, you add the actor to the world, transform the actor, and set a view in
the scene. Finally, you view the actor in the Simulation 3D Viewer window.

If you do not require detailed control over the geometry of an actor, use a predefined 3D graphic from
the list:

• Arrow
• Box
• Cone
• Cylinder
• Checker
• Extrusion
• Icosphere
• Plane
• Prism
• Pyramid
• Revolution
• Sphere
• Surf
• Terrain
• Tile
• Torus

 createShape

3-199

• Tube
• Voxel

Build Actor from a 3D Graphic Primitive in World

Create a world scene.

world = sim3d.World();

Instantiate an actor object named Cylinder.

ActObj = sim3d.Actor('ActorName','Cylinder');

Build a cylinder shape for the actor object. Specify a color. Add the actor object to the world.

createShape(ActObj,'cylinder', [0.5, 0.5, .75]);
ActObj.Color = [1, 0, 1];
add(world,ActObj);

Set Actor Transformation

Use the actor object translation, rotation, and scale properties to orient the actor relative to the
world origin.

ActObj.Translation = [0 0 0];
ActObj.Rotation = [0, 0, 0];
ActObj.Scale = [1, 1, 1];

Set Viewer Window Point of View

If you do not create a viewport, then the point of view is set to 0, 0 ,0, and you can use the arrow keys
and pointer to navigate in the Simulation 3D Viewer window.

For this example, use the createViewport function to create a viewport with a single field, Main,
that contains a sim3d.sensors.MainCamera object.

viewport = createViewport(world);
viewport.Translation = [-3, 0, 1];

Run Animation

Run a simulation set for 10 seconds with a sample time of 0.02 seconds.

run(world,0.02,10)

3 Functions

3-200

Delete World

Delete the world object.

delete(world)

Input Arguments
actor — Actor class where new geometry is created
sim3d.Actor object

Actor class where the new geometry is created, specified as a sim3d.Actor object.

type — Name of imported 3D file
'arrow' | 'box' | 'cone' | 'cylinder' | 'checker' | 'extrusion' | 'icosphere' | 'plane' |
'prism' | 'pyramid' | 'revolution' | 'sphere' | 'surf' | 'terrain' | 'tile' | 'torus' |
'triad' | 'tube' | 'voxel'

Name of imported 3D file, specified as one of these values:

• 'arrow'
• 'box'
• 'cone'

 createShape

3-201

• 'cylinder'
• 'checker'
• 'extrusion'
• 'icosphere'
• 'plane'
• 'prism'
• 'pyramid'
• 'revolution'
• 'sphere'
• 'surf'
• 'terrain'
• 'tile'
• 'torus'
• 'triad'
• 'tube'
• 'voxel'

inputspec — Optional parameters of each shape type
details of shape type

Optional parameters of each shape type, specified as details of the shape type.

Version History
Introduced in R2022b

See Also
copy | findBy | propagate | gather | takeSnapshot | restoreSnapshot

3 Functions

3-202

load
Load or import 3D file

Syntax
load(actor,source)
load(actor,source,scale)

Description
load(actor,source) loads the 3D file called source to the actor specified by actor.

load(actor,source,scale) specifies the overall scale applied to all the actors in source.

Input Arguments
actor — Actor class where 3D file is loaded
sim3d.Actor object

Actor class where the 3D file is loaded, specified as a sim3d.Actor object.

source — Name of location from where actor is loaded
character array

Name of location from where actor is loaded, specified as a character array. The source can be a file
path or file name. load supports these as sources.

File Formats

• MAT
• STL
• FBX
• URDF
• x3d

MATLAB Objects

• RigidBodyTree
• surf (only 3D shapes based on polygons)
• patch (only 3D shapes based on polygons)

scale — Scale applied to loaded model
real positive scalar

Overall scale applied to the entire loaded model, specified as a real positive scalar. Scale parameters
of individual objects are not affected by using this parameter.

 load

3-203

Tips
You can load STL files even with sim3d.Actor objects that are not currently added to the World.

Version History
Introduced in R2022b

See Also
copy | findBy | propagate | gather | takeSnapshot | restoreSnapshot

3 Functions

3-204

read
Return image captured with camera

Syntax
image = read(camera)

Description
image = read(camera) returns an image that is captured with the ideal camera specified by
camera in the Simulation 3D Environment (game engine)

Input Arguments
camera — Virtual camera that captures image
sim3d.sensors.IdealCamera object

Virtual camera that captures the image, specified as a sim3d.sensors.IdealCamera object.

Output Arguments
image — Image returned by camera
real positive array of integers

Image returned by camera, returned as a real positive array of integers. The size of image is vertical-
resolution-by-horizontal-resolution-by-3.
Data Types: uint8

Version History
Introduced in R2022b

See Also
sim3d.World | sim3d.sensors.MainCamera

 read

3-205

run
Run cosimulation in virtual reality world

Syntax
run(world,sampleTime)
run(world,sampleTime,simulationTime)

Description
run(world,sampleTime) runs the cosimulation with sampling period specified in sampleTime.

run(world,sampleTime,simulationTime) additionally specifies the simulation time in
simulationTime.

Input Arguments
world — World object
sim3d.World object

The sim3d.World object where cosimulation is being run.

sampleTime — Sampling period of world
0.02 | scalar

Sampling period of the virtual reality world, specified as a real positive scalar.
Data Types: single

simulationTime — Length of time of simulation
inf | scalar

Length of time the simulation runs, specified as a real positive scalar.
Data Types: single

Version History
Introduced in R2022b

See Also
sim3d.World | sim3d.Actor | findBy | propagate | gather | takeSnapshot |
restoreSnapshot

3 Functions

3-206

add
Add actor to virtual reality world

Syntax
act = add(world,actor)
act = add(world,actor,parent)

Description
act = add(world,actor) adds actor to world and returns the handle for actor in act.

act = add(world,actor,parent) additionally updates the world scene graph by attaching
actor to parent. It also returns the handle for actor in act.

Input Arguments
actor — Actor object
sim3d.Actor object

The sim3d.Actor object being added to the 3D world.

world — World object
sim3d.World object

The sim3d.World object to which the actor object is being added.

parent — Parent actor object
sim3d.Actor object

Handle to the parent actor where actor is being attached.

Version History
Introduced in R2022b

See Also
sim3d.World | sim3d.Actor | findBy | propagate | gather | takeSnapshot |
restoreSnapshot

 add

3-207

remove
Remove actor added to world or remove all actors in world

Syntax
remove(world,actor)
remove(world)

Description
remove(world,actor) removes the actor specified by actor from the world specified by world.

remove(world) removes all actors from world.

Input Arguments
world — World object
sim3d.World object

World object from which the actor object is being removed, specified as a sim3d.World object.

actor — Actor object
sim3d.Actor object

Actor object being removed from the 3D world, specified as a sim3d.Actor object.

Version History
Introduced in R2023a

See Also
sim3d.World | sim3d.Actor

3 Functions

3-208

findBy
Find all actors that match specified criteria

Syntax
actorList = findBy(actor,PropertyName,PropertyValue)
actorList = findBy(actor,PropertyName,PropertyValue,SearchMode)

Description
actorList = findBy(actor,PropertyName,PropertyValue) finds within actor and its
children, all actors that match PropertyName with specified PropertyValue.

actorList = findBy(actor,PropertyName,PropertyValue,SearchMode) finds within
actor and its children, all actors that match PropertyName with specified PropertyValue.

Input Arguments
actor — Actor being searched
sim3d.Actor object

Actor being searched, specified as a sim3d.Actor object.

PropertyName — Name of property
character array

Name of property of sim3d.Actor object whose value is being matched, specified as a character
array.
Example: actors = findBy(Actor, 'Physics', true) finds all actors with activated physics

PropertyValue — Value of property being matched
value of sim3d.Actor object property

Value of property being matched specified as the value of a sim3d.Actor object property.
Example: a = findBy(Actor1, 'Color', [1 0 0])

SearchMode — Method of actor tree search
'full' (default) | 'first' | 'last'

Method of actor tree search, specified as 'full', 'first', or .'last'.

• 'full' – Search the entire tree branch.
• 'first' – Search the first actor object.
• 'last' – Search the last actor object.

 findBy

3-209

Output Arguments
actorList — List of actors matching specified criteria
array of sim3d.Actor objects

List of actors matching specified criteria, specified as an array of sim3d.Actor objects.

Version History
Introduced in R2022b

See Also
copy | propagate | gather | takeSnapshot | restoreSnapshot

3 Functions

3-210

Simulink 3D Animation Player
Play recorded 3D animation files

Description
Play recorded 3D animation files

The Simulink 3D Animation Player app plays 3D animation files created using the Simulink 3D
Animation animation recording functionality.

You can control the playing of the animation using toolbar buttons or Playback menu options. For
example, you can step forward or reverse, fast forward, or jump. For keyboard shortcuts, see vrplay.

To create an additional Simulink 3D Animation Player window, in the Simulink 3D Animation Player,
select File > New Window.

Open the Simulink 3D Animation Player App
• Simulink Toolstrip: On the Apps tab, under Simulation Graphics and Reporting, click the app

icon.
• MATLAB Toolstrip: On the Apps tab, under Simulation Graphics and Reporting, click the app

icon.
• MATLAB command prompt: Enter vrplay.

Examples
Play an Animation File

To play the animation file based on the vr_octavia example, run
vrplay('octavia_scene_anim.wrl').

1 In the MATLAB Apps tab, in the Simulation Graphics and Reporting section, click 3D
Animation Player.

2 In the Simulink 3D Animation Player, select File > Open. Navigate to matlab/toolbox/sl3d/
sl3ddemos/octavia_scene_anim.wrl.

3 Select Playback > Play.

 Simulink 3D Animation Player

3-211

Version History
Introduced in R2006a

See Also
Apps
3D World Editor

Functions
vrview | vrsetpref | vrplay

Topics
“Play Animation Files”
“Play Animation Files”
“Play Animations with Simulink 3D Animation Viewer”
“Animation Recording”
“File Name Tokens”

3 Functions

3-212

sim3d.sensors.IdealCamera
Capture an image and make it available in MATLAB

Description
Use the sim3d.sensors.IdealCamera class to capture an image with the virtual ideal camera in
the 3D simulation environment and return the image to MATLAB.

Creation

Syntax
camera = sim3d.sensors.IdealCamera('ActorName',actor)
camera = sim3d.sensors.IdealCamera('ImageSize',[VerticalResolution,
HorizontalResolution])
camera = sim3d.sensors.IdealCamera('HorizontalFieldOfView',fieldOfView)

Description

camera = sim3d.sensors.IdealCamera('ActorName',actor) returns a
sim3d.sensors.IdealCamera object with the actor specified by ActorName.

camera = sim3d.sensors.IdealCamera('ImageSize',[VerticalResolution,
HorizontalResolution]) returns an image of the size specified by 'ImageSize'.

camera = sim3d.sensors.IdealCamera('HorizontalFieldOfView',fieldOfView) returns
the horizontal field of view in degrees, specified by 'HorizontalFieldOfView's.

Input Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Camera = sim3d.sensors.IdealCamera('ActorName',Camera2)

'ActorName' — Name of camera actor
'Camera1' (default) | character vector | string

Name of camera actor, specified as a character vector or string.
Example: Camera = sim3d.sensors.IdealCamera('ActorName',Camera2)

'ImageSize' — Image size returned by camera
[768,1024] (default) | 1-by-2 vector of real positive integers

Image size returned by camera, specified as a 1-by-2 vector of real positive integers. The unit is in
Pixels.

 sim3d.sensors.IdealCamera

3-213

'HorizontalFieldOfView' — Horizontal field of view in degrees
90 (default) | real nonnegative scalar

Horizontal field of view in degrees, specified as a real nonnegative scalar.

Properties
Parent — Parent of actor
handle to parent sim3d.actor object

Parent of actor, specified as a handle to the parent sim3d.Actor object.

Children — Children of actor
handle to sim3d.actor children object

Children of actor, specified as a handle to the children sim3d.Actor object.

ParentWorld — Parent world method handle
handle to parent sim3d.World object

This property is read only.

Parent world method handle, specified as a handle to the sim3d.World object.

SensorIdentifier — Unique ID of sensor
real positive scalar

Unique ID of the sensor, specified as a real positive scalar.
Data Types: uint32

Translation — Translation of the sensor
[0,0,0] (default) | real 1-by-3 vector

Translation of sensor relative to the parent vehicle, specified as a real 1-by-3 vector, in meters.

Rotation — Rotation of the sensor
[0,0,0] (default) | real 1-by-3 vector

Rotation (roll, pitch, yaw) of sensor relative to the parent vehicle, specified as a real 1-by-3 vector, in
radians.

Object Functions
read Return image captured with camera

Version History
Introduced in R2022b

See Also
sim3d.World | sim3d.sensors.MainCamera | sim3d.Actor

3 Functions

3-214

sim3d.sensors.MainCamera
Define perspective in Unreal executable window

Description
Use the sim3d.sensors.MainCamera class to define a perspective in the Unreal executable
window using APlayerController::SetViewTarget.

Creation
The sim3d.sensors.MainCamera class is created by the createViewport function of the
sim3d.World class and stored in the Viewport property.

Properties
Parent — Parent of actor
handle to parent sim3d.actor object

Parent of actor, specified as a handle to the parent sim3d.Actor object.

Children — Children of actor
handle to sim3d.actor children object

Children of actor, specified as a handle to the children sim3d.Actor object.

ParentWorld — Parent world method handle
handle to parent sim3d.World object

This property is read only.

Parent world method handle, specified as a handle to the sim3d.World object.

SensorIdentifier — Unique ID of sensor
real positive scalar

Unique ID of the sensor, specified as a real positive scalar.
Data Types: uint32

Translation — Translation of the sensor
[0,0,0] (default) | real 1-by-3 vector

Translation of sensor relative to the parent vehicle, specified as a real 1-by-3 vector, in meters.

Rotation — Rotation of the sensor
[0,0,0] (default) | real 1-by-3 vector

Rotation (roll, pitch, yaw) of sensor relative to the parent vehicle, specified as a real 1-by-3 vector, in
radians.

 sim3d.sensors.MainCamera

3-215

https://docs.unrealengine.com/4.27/en-US/API/Runtime/Engine/GameFramework/APlayerController/SetViewTarget/

Version History
Introduced in R2022b

See Also
sim3d.World | sim3d.sensors.IdealCamera | sim3d.Actor

3 Functions

3-216

optimize
Change geometries to reduce number of vertices

Syntax
optimize(world,ratio)
optimize(node,ratio)

Description
optimize(world,ratio) reduces the number of faces in all IndexedFaceSet nodes of world
while trying to preserve the overall shape of these nodes.

optimize(node,ratio) reduces the number of faces in the geometry of node while trying to
preserve the overall shape of the node. If node is a grouping node, the function optimizes all
IndexedFaceSet children of that node.

Input Arguments
world — Virtual World
vrworld object

Virtual World, specified as a vrworld object.

node — Virtual Node
vrnode object

Virtual Node, specified as a vrnode object.

ratio — Fraction of intended number of faces relative to the original number of faces
real number

Fraction of intended number of faces relative to the original number of faces, specified as a real
number. If ratio is less than 1, then it is interpreted as a fraction of the resulting number of faces
relative to the original number of faces. If ratio is equal to 1, number of faces is unchanged and only
shared vertices are merged (gluing faces).

Version History
Introduced in R2021a

See Also
vrworld/edit | vrworld/reload | vrworld | vrnode | vrnode/getfield | vrnode/delete

 optimize

3-217

createViewport
Create viewport for world

Syntax
createViewport(world)

Description
createViewport(world) creates a viewport with a single field, Main that contains a
sim3d.sensors.MainCamera object.

If you do not create a viewport, then the point of view is set to 0, 0 ,0, and you can use the arrow keys
and pointer to navigate in the game.

Input Arguments
world — World where viewport is added
sim3d.World object

World where viewport is added, specified as a sim3d.World object. You can view the fields in the
structure from the Viewport property of the sim3d.World object.

Version History
Introduced in R2022b

3 Functions

3-218

3D World Editor
Edit virtual worlds for 3D animation

Description
Edit virtual worlds for 3D animation

The 3D World Editor app creates virtual worlds for visualizing and verifying dynamic system
behavior using Simulink 3D Animation. Build virtual worlds with Virtual Reality Modeling Language
(VRML) or X3D (Extensible 3D).

Use the 3D World Editor to:

• Create objects in the virtual world from scratch using X3D or VRML node types.
• Create objects using templates available in the 3D World Editor object library.
• Import objects exported from CAD tools.
• Simplify geometries of imported objects.
• Create or modify hierarchy of objects in the scene.
• Give objects in the virtual world unique names in order to access them from MATLAB and

Simulink.
• Set scene background, lighting and navigation properties.
• Define suitable viewpoints that are significant for working with the virtual world .

Open the 3D World Editor App
• Simulink Toolstrip: On the Apps tab, under Simulation Graphics and Reporting, click the app

icon.
• MATLAB Toolstrip: On the Apps tab, under Simulation Graphics and Reporting, click the app

icon.

 3D World Editor

3-219

• MATLAB command prompt: Enter vredit.

Examples
• “Create a Virtual World”
• “Build and Connect a Virtual World”
• “Edit a Virtual World”
• “Reduce Number of Polygons for Shapes”
• “Add Sound to a Virtual World”
• “View a Virtual World in Stereoscopic Vision”
• “Virtual Reality World and Dynamic System Examples”

Version History
Introduced in R2010b

See Also
Apps
Simulink 3D Animation Player

Functions
vrsetpref | vrview | vredit

Topics
“Create a Virtual World”
“Build and Connect a Virtual World”
“Edit a Virtual World”
“Reduce Number of Polygons for Shapes”
“Add Sound to a Virtual World”
“View a Virtual World in Stereoscopic Vision”
“Virtual Reality World and Dynamic System Examples”
“3D World Editor”
“X3D Support”
“Virtual Reality Modeling Language (VRML)”
“3D World Editor Library”
“Virtual World Navigation in 3D World Editor”

3 Functions

3-220

	Scenes
	Empty Scene

	Blocks
	Cross Product
	Joystick Input
	MATLAB to VR Coordinates
	Normalize Vector
	Rotation Between 2 Vectors
	Rotation Matrix to VR Rotation
	Space Mouse Input
	Viewpoint Direction to VR Orientation
	VR Placeholder
	VR RigidBodyTree
	VR to MATLAB Coordinates
	VR Rotation to Rotation Matrix
	VR Signal Expander
	VR Sink
	VR Source
	VR Text Output
	VR To Video
	VR Tracer
	Simulation 3D Actor Transform Get
	Simulation 3D Actor Transform Set
	Simulation 3D Camera Get
	Simulation 3D Scene Configuration
	Simulation 3D Actor

	Functions
	stl2vrml
	vrcadcleanup
	vr.canvas
	vr.canvas.capture
	vrclear
	vrclose
	vrcoordm2vr
	vrcoordvr2m
	vrdir2ori
	vrdrawnow
	vredit
	vrfigure
	vrfigure.capture
	vrfigure.close
	vrfigure.get
	vrfigure.isvalid
	vrfigure.set
	vrgcbf
	vrgcf
	vrgetpref
	vrifs2patch
	vrimport
	vrinsertrobot
	vrinstall
	vrjoystick
	vrjoystick.axis
	vrjoystick.button
	vrjoystick.caps
	vrjoystick.close
	vrjoystick.force
	vrjoystick.pov
	vrjoystick.read
	vrlib
	vrnode
	vrnode/delete
	vrnode/interpolate
	vrnode/isfield
	vrnode/fields
	vrnode/get
	vrnode/getfield
	vrnode/isvalid
	vrnode/set
	vrnode/setfield
	vrnode/sync
	vrori2dir
	vrpatch2ifs
	vrphysmod
	vrplay
	vrrotvec
	vrrotmat2vec
	vrrotvec2mat
	vrsetpref
	vrspacemouse
	vr.utils.stereo3d
	vrupdaterobot
	vrview
	vrwho
	vrwhos
	vrworld
	vrworld/addexternproto
	vrworld/close
	vrworld/delete
	vrworld/edit
	vrworld/get
	vrworld/isvalid
	vrworld/nodes
	vrworld/open
	vrworld/reload
	vrworld/save
	vrworld/set
	vrworld/view
	sim3d.World
	takeSnapshot
	restoreSnapshot
	createMesh
	addMesh
	sim3d.Actor
	copy
	save
	propagate
	gather
	createShape
	load
	read
	run
	add
	remove
	findBy
	Simulink 3D Animation Player
	sim3d.sensors.IdealCamera
	sim3d.sensors.MainCamera
	optimize
	createViewport
	3D World Editor

